pytorch搭建unet3+网络,并输出网络结构
时间: 2023-05-26 18:04:07 浏览: 140
以下是使用PyTorch搭建UNET3网络,并输出网络结构的代码:
```python
import torch
import torch.nn as nn
class UNet3(nn.Module):
def __init__(self, in_channels, out_channels):
super(UNet3, self).__init__()
# 编码器部分
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1, bias=True)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=True)
self.relu2 = nn.ReLU(inplace=True)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True)
self.relu3 = nn.ReLU(inplace=True)
self.conv4 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True)
self.relu4 = nn.ReLU(inplace=True)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv5 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True)
self.relu5 = nn.ReLU(inplace=True)
self.conv6 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True)
self.relu6 = nn.ReLU(inplace=True)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv7 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True)
self.relu7 = nn.ReLU(inplace=True)
self.conv8 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True)
self.relu8 = nn.ReLU(inplace=True)
# 解码器部分
self.upconv1 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2, bias=True)
self.conv9 = nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1, bias=True)
self.relu9 = nn.ReLU(inplace=True)
self.conv10 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True)
self.relu10 = nn.ReLU(inplace=True)
self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2, bias=True)
self.conv11 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1, bias=True)
self.relu11 = nn.ReLU(inplace=True)
self.conv12 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True)
self.relu12 = nn.ReLU(inplace=True)
self.upconv3 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2, bias=True)
self.conv13 = nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1, bias=True)
self.relu13 = nn.ReLU(inplace=True)
self.conv14 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=True)
self.relu14 = nn.ReLU(inplace=True)
# 最终输出
self.conv15 = nn.Conv2d(64, out_channels, kernel_size=1, stride=1, bias=True)
def forward(self, x):
# 编码器部分
x1 = self.conv1(x)
x1 = self.relu1(x1)
x1 = self.conv2(x1)
x1 = self.relu2(x1)
x2 = self.pool1(x1)
x2 = self.conv3(x2)
x2 = self.relu3(x2)
x2 = self.conv4(x2)
x2 = self.relu4(x2)
x3 = self.pool2(x2)
x3 = self.conv5(x3)
x3 = self.relu5(x3)
x3 = self.conv6(x3)
x3 = self.relu6(x3)
x4 = self.pool3(x3)
x4 = self.conv7(x4)
x4 = self.relu7(x4)
x4 = self.conv8(x4)
x4 = self.relu8(x4)
# 解码器部分
x5 = self.upconv1(x4)
x5 = torch.cat([x5, x3], dim=1)
x5 = self.conv9(x5)
x5 = self.relu9(x5)
x5 = self.conv10(x5)
x5 = self.relu10(x5)
x6 = self.upconv2(x5)
x6 = torch.cat([x6, x2], dim=1)
x6 = self.conv11(x6)
x6 = self.relu11(x6)
x6 = self.conv12(x6)
x6 = self.relu12(x6)
x7 = self.upconv3(x6)
x7 = torch.cat([x7, x1], dim=1)
x7 = self.conv13(x7)
x7 = self.relu13(x7)
x7 = self.conv14(x7)
x7 = self.relu14(x7)
# 最终输出
out = self.conv15(x7)
return out
# 输出网络结构
if __name__ == '__main__':
net = UNet3(in_channels=3, out_channels=2)
print(net)
```
阅读全文