loss_function = nn.MSELoss()

时间: 2024-06-16 22:06:59 浏览: 17
nn.MSELoss()是PyTorch中的一个损失函数,于计算均方误差(Mean Squared Error)。它是一种常用的回归问题的损失函数。 均方误差是通过计算预测值与真实值之间的差异来衡量模型的性能。具体而言,它计算了预测值与真实值之间差异的平方,并求取平均值作为最终的损失值。 在使用nn.MSELoss()时,通常需要将模型的输出与真实标签作为输入。该损失函数会自动计算预测值与真实值之间的均方误差,并返回一个标量作为模型的损失。 以下是使用nn.MSELoss()的示例代码: ``` import torch import torch.nn as nn # 模型输出 outputs = torch.tensor([0.5, 0.8, 1.2]) # 真实标签 targets = torch.tensor([1.0, 1.2, 1.5]) # 创建MSELoss对象 loss_function = nn.MSELoss() # 计算损失 loss = loss_function(outputs, targets) print(loss) ```
相关问题

loss_function = nn.MSELoss()什么意思

loss_function = nn.MSELoss() 表示定义了一个用于计算均方误差(MSE)的损失函数,并将其命名为 loss_function。在深度学习中,损失函数常常用于评估模型预测结果与真实结果之间的误差,从而指导模型的学习过程。均方误差是一种常用的损失函数,用于评估模型预测结果与真实结果之间的平均差异程度,其数学表达式为:MSE = 1/n * Σ(y_pred - y_true)^2,其中 n 表示样本数量,y_pred 表示模型的预测值,y_true 表示真实的标签值。

if loss_function == 'MSE': loss_func = nn.MSELoss(reduction='mean'),怎么改成MAE的代码

如果你想在 PyTorch 中使用 MAE 作为损失函数,可以使用 `nn.L1Loss()`。`nn.L1Loss()` 计算的是预测值与真实值之间的绝对误差,也称为平均绝对误差(MAE)。 以下是将 MSE 损失函数改为 MAE 损失函数的代码示例: ```python import torch.nn as nn if loss_function == 'MSE': loss_func = nn.MSELoss(reduction='mean') elif loss_function == 'MAE': loss_func = nn.L1Loss(reduction='mean') ``` 可以看到,只需要将 `nn.MSELoss()` 替换为 `nn.L1Loss()` 即可。其他的参数设置和使用方法与 MSE 损失函数相同。

相关推荐

#LSTM #from tqdm import tqdm import os os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" import time #GRUmodel=GRU(feature_size,hidden_size,num_layers,output_size) #GRUmodel=GRUAttention(7,5,1,2).to(device) model=lstm(7,20,2,1).to(device) model.load_state_dict(torch.load("LSTMmodel1.pth",map_location=device))#pytorch 导入模型lstm(7,20,4,1).to(device) loss_function=nn.MSELoss() lr=[] start=time.time() start0 = time.time() optimizer=torch.optim.Adam(model.parameters(),lr=0.5) scheduler = ReduceLROnPlateau(optimizer, mode='min',factor=0.5,patience=50,cooldown=60,min_lr=0,verbose=False) #模型训练 trainloss=[] epochs=2000 best_loss=1e10 for epoch in range(epochs): model.train() running_loss=0 lr.append(optimizer.param_groups[0]["lr"]) #train_bar=tqdm(train_loader)#形成进度条 for i,data in enumerate(train_loader): x,y=data optimizer.zero_grad() y_train_pred=model(x) loss=loss_function(y_train_pred,y.reshape(-1,1)) loss.backward() optimizer.step() running_loss+=loss.item() trainloss.append(running_loss/len(train_loader)) scheduler.step(trainloss[-1]) #模型验证 model.eval() validation_loss=0 validationloss=[] with torch.no_grad(): #validation_bar=tqdm(validation_loader) for j,data in enumerate(validation_loader): x_validation,y_validation=data y_validation_pred=model(x_validation) validationrunloss=loss_function(y_validation_pred,y_validation.reshape(-1,1)) validation_loss+=validationrunloss #validation_bar.desc="loss:{:.4f}".format(validation_loss/len(validation_loader)) validation_loss=validation_loss/len(validation_loader) validationloss.append(validation_loss) end=time.time() print("learningrate:%.5f,epoch:[%5d/%5d]time:%.2fs, train_loss:%.5f,validation_loss:%.6f" % (lr[-1],epoch, epochs, (end - start),trainloss[-1],validationloss[-1])) start = time.time() if validationloss[-1]<best_loss: best_loss=validationloss[-1] torch.save(model.state_dict,"LSTMmodel1.pth") #torch.save(model.state_dict,"LSTMmodel.pth") end0 = time.time() print("the total training time is :%.2fmin" % ((end0 - start0) / 60)) 报错:Expected state_dict to be dict-like, got <class 'method'>.

class GRU(nn.Module): def init(self, feature_size, hidden_size, num_layers, output_size): super(GRU, self).init() self.hidden_size = hidden_size # 隐层大小 self.num_layers = num_layers # gru层数 # feature_size为特征维度,就是每个时间点对应的特征数量,这里为1 self.gru = nn.GRU(feature_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x, hidden=None): batch_size = x.shape[0] # 获取批次大小 # 初始化隐层状态 if hidden is None: h_0 = x.data.new(self.num_layers, batch_size, self.hidden_size).fill_(0).float() else: h_0 = hidden # GRU运算 output, h_0 = self.gru(x, h_0) # 获取GRU输出的维度信息 batch_size, timestep, hidden_size = output.shape # 将output变成 batch_size * timestep, hidden_dim output = output.reshape(-1, hidden_size) # 全连接层 output = self.fc(output) # 形状为batch_size * timestep, 1 # 转换维度,用于输出 output = output.reshape(timestep, batch_size, -1) # 将我们的输出数据的第—个维度变成时间片, # 如果我们设置timestep=5,那么我们的 output 的输出就为【5,32,1】 # 作为模型输出我们只需要最后一个时间片的数据作为输出即可 # 因为GRU是处理时序数据的,最后一个时间片包含了前面所有时间片的信息(T1,T2.….) # 我们只需要返回最后一个时间片的数据即可 return output[-1] gru = GRU(config.feature_size, config.hidden_size, config.num_layers, config.output_size) # 定义GRU网络 loss_function = nn.MSELoss() # 定义损失函数 optimizer = torch.optim.AdamW(gru.parameters(), lr=config.learning_rate_gru) # 定义优化器按句解释这一段代码的意思,每句话有什么作用,实现了什么功能?

下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))

import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt from torch import autograd """ 用神经网络模拟微分方程,f(x)'=f(x),初始条件f(0) = 1 """ class Net(nn.Module): def __init__(self, NL, NN): # NL n个l(线性,全连接)隐藏层, NN 输入数据的维数, # NL是有多少层隐藏层 # NN是每层的神经元数量 super(Net, self).__init__() self.input_layer = nn.Linear(1, NN) self.hidden_layer = nn.Linear(NN,int(NN/2)) ## 原文这里用NN,我这里用的下采样,经过实验验证,“等采样”更优。更多情况有待我实验验证。 self.output_layer = nn.Linear(int(NN/2), 1) def forward(self, x): out = torch.tanh(self.input_layer(x)) out = torch.tanh(self.hidden_layer(out)) out_final = self.output_layer(out) return out_final net=Net(4,20) # 4层 20个 mse_cost_function = torch.nn.MSELoss(reduction='mean') # Mean squared error 均方误差求 optimizer = torch.optim.Adam(net.parameters(),lr=1e-4) # 优化器 def ode_01(x,net): y=net(x) y_x = autograd.grad(y, x,grad_outputs=torch.ones_like(net(x)),create_graph=True)[0] return y-y_x # y-y' = 0 # requires_grad=True).unsqueeze(-1) plt.ion() # 动态图 iterations=200000 for epoch in range(iterations): optimizer.zero_grad() # 梯度归0 ## 求边界条件的损失函数 x_0 = torch.zeros(2000, 1) y_0 = net(x_0) mse_i = mse_cost_function(y_0, torch.ones(2000, 1)) # f(0) - 1 = 0 ## 方程的损失函数 x_in = np.random.uniform(low=0.0, high=2.0, size=(2000, 1)) pt_x_in = autograd.Variable(torch.from_numpy(x_in).float(), requires_grad=True) # x 随机数 pt_y_colection=ode_01(pt_x_in,net) pt_all_zeros= autograd.Variable(torch.from_numpy(np.zeros((2000,1))).float(), requires_grad=False) mse_f=mse_cost_function(pt_y_colection, pt_all_zeros) # y-y' = 0 loss = mse_i + mse_f loss.backward() # 反向传播 optimizer.step() # 优化下一步。This is equivalent to : theta_new = theta_old - alpha * derivative of J w.r.t theta if epoch%1000==0: y = torch.exp(pt_x_in) # y 真实值 y_train0 = net(pt_x_in) # y 预测值 print(epoch, "Traning Loss:", loss.data) print(f'times {epoch} - loss: {loss.item()} - y_0: {y_0}') plt.cla() plt.scatter(pt_x_in.detach().numpy(), y.detach().numpy()) plt.scatter(pt_x_in.detach().numpy(), y_train0.detach().numpy(),c='red') plt.pause(0.1)

最新推荐

recommend-type

Pytorch 的损失函数Loss function使用详解

在PyTorch中,`nn.MSELoss()` 用于计算这种损失。对于`sample`和`target`,MSE损失为 `(1^2 + 0^2 + 1^2 + 3^2)/4 = 1.5`。 4. CrossEntropyLoss CrossEntropyLoss在多分类任务中常用,结合了对数损失和softmax函数...
recommend-type

JAVA图书馆书库管理系统设计(论文+源代码).zip

JAVA图书馆书库管理系统设计(论文+源代码)
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到