构造哈夫曼树的贪心策略

时间: 2024-01-07 21:23:48 浏览: 36
哈夫曼树的构造是通过贪心策略来实现的。贪心策略是指在每一步选择中都选择当前最优的解决方案,从而希望最终得到全局最优解。 构造哈夫曼树的贪心策略如下: 1. 首先,根据给定的n个权值{w(1),w(2),…,w(n)}构成n棵二叉树的森林F=(T1,…,Tn)。其中每棵二叉树中只有一个带权为w(k)的根结点,其余结点的权值均为0。 2. 从森林F中选择两棵根结点权值最小的树,将它们合并为一棵新的二叉树,且新的二叉树的根结点的权值为这两棵树的根结点权值之和。 3. 将新的二叉树加入到森林F中,并删除原来的两棵树。 4. 重复步骤2和步骤3,直到森林F中只剩下一棵树为止,这棵树就是构造出的哈夫曼树。 贪心策略的关键在于每一步都选择当前最优的解决方案,即选择权值最小的两棵树进行合并。这样可以保证最终构造出的哈夫曼树具有最小的带权路径长度,从而达到了全局最优解。
相关问题

给定权值构造哈夫曼树

哈夫曼树是一种带有权值的二叉树,它的构造方法是通过贪心策略,将权值最小的两个节点合并成一个新节点,直到最后只剩下一个节点为止。下面是给定权值构造哈夫曼树的详细步骤: 1. 将所有权值作为叶子节点,构造一个节点集合。 2. 从节点集合中选出两个权值最小的节点,合并成一个新节点,权值为两个节点的权值之和。 3. 将新节点加入节点集合中,并删除原来的两个节点。 4. 重复步骤2和3,直到节点集合中只剩下一个节点为止,这个节点就是哈夫曼树的根节点。 下面是一个示例,假设给定的权值为[5, 9, 12, 13, 16, 45]: 首先构造出6个叶子节点: ``` 5 9 12 13 16 45 / / / / / / A B C D E F ``` 然后按照上面的步骤,合并权值最小的两个节点: ``` 5 9 12 13 16 45 / / / / / A B C D ┌────F │ 61 │ └────E ``` 继续合并权值最小的两个节点: ``` 5 9 12 13 16 45 / / / / / / A B C ┌────D E F │ 25 │ └─────┐ │ 36 │ └────C ``` 继续合并权值最小的两个节点: ``` 5 9 12 13 16 45 / / / / / / A B ┌─────┐ D E F │ │ 25 36 │ │ └─────┘ │ 61 │ └────C ``` 最后只剩下一个节点,它就是哈夫曼树的根节点: ``` 111 / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ 5 106 / \ / \ / \ / \ / \ / \ A B C 61 / \ / \ D E ``` 因此,给定权值构造出的哈夫曼树就是上面的树形结构。

数据结构构造哈夫曼树c++

哈夫曼树是一种特殊的二叉树,它的叶子节点对应着要编码的字符,而非叶子节点则对应着编码。哈夫曼树的构建过程是基于贪心策略的,即每次选取出现频率最小的两个节点,将它们合并成一个新节点,直到最后形成一棵哈夫曼树。以下是一个 C++ 的实现: ```c++ #include <iostream> #include <queue> #include <vector> using namespace std; // 定义哈夫曼树节点结构体 struct TreeNode { char data; // 节点存储的字符 int freq; // 节点对应字符出现的频率 TreeNode* left; // 左子节点 TreeNode* right; // 右子节点 TreeNode(char data, int freq) : data(data), freq(freq), left(nullptr), right(nullptr) {} }; // 定义比较函数,用于优先队列的排序 struct cmp { bool operator()(TreeNode* a, TreeNode* b) { return a->freq > b->freq; // 频率小的节点优先级高 } }; // 构建哈夫曼树的函数 TreeNode* buildHuffmanTree(vector<char>& chars, vector<int>& freqs) { priority_queue<TreeNode*, vector<TreeNode*>, cmp> pq; // 定义优先队列 for (int i = 0; i < chars.size(); i++) { TreeNode* node = new TreeNode(chars[i], freqs[i]); // 创建节点,存储字符和频率 pq.push(node); // 将节点加入到优先队列中 } while (pq.size() > 1) { // 只要队列中还有两个及以上的节点 TreeNode* left = pq.top(); // 取出频率最小的节点 pq.pop(); TreeNode* right = pq.top(); // 取出频率次小的节点 pq.pop(); TreeNode* parent = new TreeNode('$', left->freq + right->freq); // 新建一个父节点 parent->left = left; // 将左子节点挂到父节点下面 parent->right = right; // 将右子节点挂到父节点下面 pq.push(parent); // 将新建的父节点加入到队列中 } return pq.top(); // 队列中最后剩下的节点即为根节点 } // 递归打印哈夫曼树的编码 void printHuffmanCode(TreeNode* root, string code) { if (!root) return; // 递归结束条件 if (root->data != '$') { // 如果是叶子节点,输出对应字符和编码 cout << root->data << " " << code << endl; } printHuffmanCode(root->left, code + "0"); // 递归处理左子树 printHuffmanCode(root->right, code + "1"); // 递归处理右子树 } int main() { vector<char> chars = {'a', 'b', 'c', 'd', 'e', 'f'}; vector<int> freqs = {5, 9, 12, 13, 16, 45}; TreeNode* root = buildHuffmanTree(chars, freqs); printHuffmanCode(root, ""); return 0; } ``` 输出结果: ``` f 0 c 100 d 101 a 1100 b 1101 e 111 ``` 以上代码中,`buildHuffmanTree` 函数用于构建哈夫曼树,它使用了优先队列(堆)来维护频率最小的两个节点,不断合并成为新的节点,直到最后形成一棵哈夫曼树。`printHuffmanCode` 函数用于递归打印哈夫曼树的编码,其中传入的 `code` 参数表示当前节点的编码。

相关推荐

最新推荐

recommend-type

C语言实现哈夫曼树的构建

主要为大家详细介绍了C语言实现哈夫曼树的构建,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

C++实现哈夫曼树简单创建与遍历的方法

主要介绍了C++实现哈夫曼树简单创建与遍历的方法,对于C++算法的学习来说不失为一个很好的借鉴实例,需要的朋友可以参考下
recommend-type

数据结构课程设计_哈夫曼树

1、训练学生灵活应用所学数据结构知识,独立完成问题分析,结合数据结构理论知识,编写程序求解指定问题。 2.初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能; 3.提高综合运用所学的...
recommend-type

06_QLibrary.zip

06_QLibrary.zip
recommend-type

毕业设计: 基于Densenet + CTC技术的文字检测识别的技术研究

本毕设课题是属于计算机视觉下的目标检测与识别,对象为自然场景下的各种文本信息,通俗的说就是检测识别图片中的文本信息。由于文本的特殊性,本毕设将整个提取信息的过程可以分为检测、识别两个部分。 论文对用到的相关技术概念有一定的介绍分析,如机器学习,深度学习,以及各种的网络模型及其工作原理过程。 检测部分采用水平检测文本线方式进行文本检测,主要参考了乔宇老师团队的 CTPN 方法,并在正文部分从模型的制作到神经网络的设计实现对系统进行了较为详细的分析介绍。 识别部分则采用的是 Densenet + CTC,对于印刷体的文字有较好的识别。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。