鸢尾花机器学习roc曲线
时间: 2023-12-29 15:04:14 浏览: 156
鸢尾花数据的可视化,并使用Sklearn训练svm和lr模型并绘制出各自的ROC与P-R曲线.zip
为了绘制鸢尾花机器学习的ROC曲线,需要进行以下步骤:
1. 加载数据集并进行数据预处理,将标签进行编码。
```python
from sklearn import datasets
from sklearn.preprocessing import label_binarize
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 将标签进行编码
y = label_binarize(y, classes=[0, 1, 2])
n_classes = y.shape[1]
```
2. 将数据集分为训练集和测试集,并进行模型训练和预测。
```python
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)
# 训练模型并进行预测
# 这里以SVM分类器为例
from sklearn.svm import SVC
classifier = SVC(kernel='linear', probability=True, random_state=0)
y_score = classifier.fit(X_train, y_train).decision_function(X_test)
```
3. 计算ROC曲线的假正率(FPR)和真正率(TPR),并计算AUC值。
```python
# 计算ROC曲线的假正率(FPR)和真正率(TPR)
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# 计算微平均ROC曲线和AUC值
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
```
4. 绘制ROC曲线。
```python
# 绘制ROC曲线
plt.figure()
lw = 2
plt.plot(fpr[2], tpr[2], color='darkorange',
lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[2])
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()
```
阅读全文