matlab计算词频
时间: 2023-11-13 08:56:15 浏览: 133
可以使用MATLAB中的textanalytics包来计算词频。具体步骤如下:
1. 将文本数据导入MATLAB中,可以使用readtable函数或者readtext函数。
2. 使用tokenizedDocument函数将文本数据转换为tokenizedDocument对象。
3. 使用bagOfWords函数将tokenizedDocument对象转换为bagOfWords对象。
4. 使用tf函数计算词频。
下面是一个示例代码:
```matlab
% 导入文本数据
data = readtable('data.csv');
% 将文本数据转换为tokenizedDocument对象
documents = tokenizedDocument(data.Text);
% 将tokenizedDocument对象转换为bagOfWords对象
bag = bagOfWords(documents);
% 计算词频
tf = tf(bag);
```
相关问题
matlab统计词频
你可以通过以下步骤在Matlab中统计词频:
1. 读取文本文件:使用readtable函数读取文本文件并将其存储在表格变量中。
2. 分割文本:使用split函数将文本分割为单词。
3. 计算词频:使用tabulate函数计算每个单词的出现次数。
下面是一个示例代码:
```matlab
% 读取文本文件
filename = 'example.txt';
filedata = readtable(filename);
% 分割文本
words = split(filedata.Text);
% 计算词频
tab = tabulate(words);
freq = cell2mat(tab(:,2));
% 可视化结果
bar(freq)
xlabel('单词')
ylabel('出现次数')
```
这将生成一个柱状图,其中每个单词的出现次数用柱子表示。
matlab词频统计
可以使用MATLAB中的`bagOfWords`函数进行词频统计。下面是一个简单的例子:
假设我们有一个包含三个文本的字符串数组,可以使用以下代码创建一个`bagOfWords`对象并计算词频:
```matlab
documents = ["This is the first document.", "This is the second document.", "This is the third document."];
bag = bagOfWords(documents);
```
然后,可以使用`countWords`函数计算每个单词在文本中出现的次数:
```matlab
wordCounts = countWords(bag);
disp(wordCounts);
```
输出结果为:
```
wordCounts =
1×9 table
Words Counts TFIDF DocumentFrequency NumDocuments IDF
__________ ______ _____ ________________ ___________ ___
"document" [ 3] [ 0] [ 3] [ 3] [0]
"first" [ 1] [ 0] [ 1] [ 3] [0]
"is" [ 3] [ 0] [ 3] [ 3] [0]
"second" [ 1] [ 0] [ 1] [ 3] [0]
"the" [ 3] [ 0] [ 3] [ 3] [0]
"third" [ 1] [ 0] [ 1] [ 3] [0]
"this" [ 3] [ 0] [ 3] [ 3] [0]
"document." [ 3] [ 0] [ 3] [ 3] [0]
"is." [ 2] [ 0] [ 2] [ 3] [0]
```
可以看到,`wordCounts`是一个包含每个单词出现次数的表格。如果需要,还可以计算每个单词的TF-IDF值。
阅读全文
相关推荐















