python中knn算法预测鸢尾花数据集精度代码
时间: 2024-09-10 07:00:34 浏览: 58
KNN算法在鸢尾花数据集的实现
5星 · 资源好评率100%
在Python中,我们可以使用sklearn库中的K-近邻(KNN)算法对鸢尾花数据集进行预测,并计算预测精度。首先,你需要导入所需的库并加载数据集。以下是基本步骤:
```python
# 导入所需库
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
# 加载鸢尾花数据集
iris = datasets.load_iris()
X = iris.data # 特征
y = iris.target # 类别标签
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建KNN分类器
knn = KNeighborsClassifier(n_neighbors=5) # 通常选择合适的k值
# 训练模型
knn.fit(X_train, y_train)
# 预测
y_pred = knn.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"KNN分类器的预测精度为: {accuracy*100}%")
#
阅读全文