Python代码KNN算法鸢尾花数据分析 
时间: 2023-05-22 18:00:48 浏览: 43
可以回答。以下是一个简单的 Python 代码实现 KNN 算法对鸢尾花数据进行分类的示例:
```
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
# 加载鸢尾花数据集
iris = load_iris()
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)
# 创建 KNN 分类器
knn = KNeighborsClassifier(n_neighbors=3)
# 训练模型
knn.fit(X_train, y_train)
# 预测测试集
y_pred = knn.predict(X_test)
# 输出准确率
print("Accuracy:", knn.score(X_test, y_test))
```
这段代码使用了 scikit-learn 库中的 KNeighborsClassifier 类来实现 KNN 算法,对鸢尾花数据进行分类,并输出了模型在测试集上的准确率。
相关问题
python实现knn算法鸢尾花代码
下面是使用Python实现KNN算法的鸢尾花代码:
``` python
# 导入需要用到的库
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
# 加载鸢尾花数据集
iris = load_iris()
# 获取特征和标签
X = iris.data
y = iris.target
# 将数据集分成训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
# 定义KNN分类器并进行训练
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
# 使用训练好的模型进行预测
y_pred = knn.predict(X_test)
# 计算模型的准确率
accuracy = np.mean(y_pred == y_test)
print("准确率:", accuracy)
```
代码中使用了`sklearn`库中的`KNeighborsClassifier`类来实现KNN算法,同时使用了`train_test_split`函数将数据集分成训练集和测试集,最后计算了模型的准确率。
python实现knn算法鸢尾花源代码
以下是使用Python实现knn算法对鸢尾花进行分类的代码:
```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 定义knn算法函数
def knn(X_train, y_train, X_test, k):
distances = []
targets = []
for i in range(len(X_train)):
distance = np.sqrt(np.sum(np.square(X_test - X_train[i, :])))
distances.append([distance, i])
distances = sorted(distances)
for i in range(k):
index = distances[i][1]
targets.append(y_train[index])
return np.bincount(targets).argmax()
# 对测试集进行预测
predictions = []
for i in range(len(X_test)):
predictions.append(knn(X_train, y_train, X_test[i, :], 3))
# 计算预测准确率
accuracy = np.sum(np.array(predictions) == y_test) / len(y_test)
print("预测结果:", predictions)
print("真实结果:", y_test)
print("预测准确率:", accuracy)
```
输出结果:
```
预测结果: [2, 0, 2, 0, 0, 2, 2, 2, 2, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 2, 2, 2, 2, 0, 2, 2, 0, 0, 2]
真实结果: [2 0 2 0 0 1 2 2 2 0 1 1 1 0 0 1 1 1 0 0 2 2 2 2 0 2 2 0 0 2]
预测准确率: 0.9333333333333333
```
相关推荐













