用pycharm实现它
时间: 2024-11-20 19:38:47 浏览: 6
在PyCharm中实现KNN模型通常按照以下步骤进行:
1. **环境设置**: 安装必要的库,例如scikit-learn用于KNN模型,pandas用于数据处理,matplotlib或seaborn用于数据可视化。在PyCharm的项目中,你可以通过"File" > "Project Structure" > "Libraries"添加这些库。
2. **导入模块**:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
import matplotlib.pyplot as plt
```
3. **加载和预处理数据**:
```python
# 加载数据
wine_data = pd.read_csv('wine.csv') # 假设数据文件名是wine.csv
X = wine_data.drop('class', axis=1) # 特征
y = wine_data['class'] # 类别
# 分割数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 归一化特征
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```
4. **创建和训练模型**:
```python
knn = KNeighborsClassifier(n_neighbors=5) # 假设初始尝试k=5
knn.fit(X_train_scaled, y_train)
```
5. **预测和评估**:
```python
y_pred = knn.predict(X_test_scaled)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")
cm = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:\n", cm)
```
6. **可视化的例子**:
```python
df_cm = pd.DataFrame(cm, index=wine_data['class'].unique(), columns=wine_data['class'].unique())
plt.figure(figsize=(10, 7))
sns.heatmap(df_cm, annot=True, cmap='Blues')
plt.title("Confusion Matrix")
plt.xlabel("Predicted")
plt.ylabel("True");
```
7. **保存模型** (可选):
```python
joblib.dump(knn, 'knn_model.pkl') # 如果你想保存模型以便后续使用
```
阅读全文