停车场停车等待(C语言)

时间: 2024-08-12 18:09:04 浏览: 41
在C语言中,编写一个简单的停车场停车等待系统并不复杂,你可以使用结构体来模拟停车位,数组或链表来存储停车位信息,并设计一个函数来处理车辆的入出和等待。以下是一个简化的示例: ```c #include <stdio.h> #include <stdlib.h> typedef struct { int status; // 0表示空位,1表示已占用 int car_waiting; // 如果车位被占,记录等待车辆数 } ParkingSpot; #define MAX_SPOTS 10 // 停车场最大停车位数量 ParkingSpot parking_spots[MAX_SPOTS]; void park(int vehicle_id) { int i; for (i = 0; i < MAX_SPOTS; i++) { if (parking_spots[i].status == 0) { parking_spots[i].status = 1; // 车辆进入 parking_spots[i].car_waiting = 0; // 初始等待数为0 printf("Vehicle %d parked in spot %d.\n", vehicle_id, i + 1); break; } else if (parking_spots[i].status == 1 && parking_spots[i].car_waiting == 0) { parking_spots[i].car_waiting = vehicle_id; // 车辆进入等待区 printf("Vehicle %d is waiting in spot %d.\n", vehicle_id, i + 1); break; } } } void leave(int vehicle_id) { int i; for (i = 0; i < MAX_SPOTS; i++) { if (parking_spots[i].status == 1 && parking_spots[i].car_waiting == vehicle_id) { parking_spots[i].status = 0; // 车辆离开,车位空闲 parking_spots[i].car_waiting = 0; // 清空等待计数 printf("Vehicle %d left spot %d.\n", vehicle_id, i + 1); break; } } } int main() { // 示例操作 park(1); park(2); // 第二辆车会等待 leave(1); leave(2); return 0; } ```

相关推荐

最新推荐

recommend-type

停车场管理系统 数据结构 C语言

标题中的“停车场管理系统 数据结构 C语言”指的是一个使用C语言编程的数据结构课程设计项目,旨在构建一个模拟停车场运作的系统。这个系统的核心是利用数据结构来管理车辆的进出信息。 描述部分强调了这个课程设计...
recommend-type

数据结构停车场管理系统及课程设计报告

栈用于模拟停车场内车辆的进出,队列则用于管理等待进入停车场的车辆。 栈是一种“后进先出”(LIFO)的数据结构,非常适合模拟车辆在停车场内的行为。当车辆进入停车场时,它们被“压入”栈中,从最里面的位置开始...
recommend-type

数据机构课程设计停车场管理问题

停车场容量为n,满员后,新到车辆会在外部等待。 2. **车辆管理**:车辆进入停车场时,会根据到达时间记录其位置和进入时间。当车辆离开时,需要计算停留时间并根据费率收取费用。如果某车辆要离开,后面进入的车辆...
recommend-type

应用程序课程设计--停车场管理 C语言实现

在这个停车场管理的C语言课程设计中,我们需要实现一个模拟系统,该系统能够处理汽车的进入、离开和费用计算。这个系统的关键在于使用栈来模拟停车场,队列来模拟车场外的便道,同时考虑了车库容量、停车费用以及...
recommend-type

数据结构课程设计停车场管理

栈用于存放停放在停车场内的车辆,遵循后进先出(LIFO)原则,而队列则按照先进先出(FIFO)原则管理等待进入停车场的车辆。 系统设计的基本要求如下: 1. **栈**:停车场由顺序结构的栈来模拟。当车辆到达,如果...
recommend-type

C++多态实现机制详解:虚函数与早期绑定

C++多态性实现机制是面向对象编程的重要特性,它允许在运行时根据对象的实际类型动态地调用相应的方法。本文主要关注于虚函数的使用,这是实现多态的关键技术之一。虚函数在基类中声明并被标记为virtual,当派生类重写该函数时,基类的指针或引用可以正确地调用派生类的版本。 在例1-1中,尽管定义了fish类,但基类animal中的breathe()方法并未被声明为虚函数。因此,当我们创建一个fish对象fh,并将其地址赋值给animal类型的指针pAn时,编译器在编译阶段就已经确定了函数的调用地址,这就是早期绑定。这意味着pAn指向的是animal类型的对象,所以调用的是animal类的breathe()函数,而不是fish类的版本,输出结果自然为"animalbreathe"。 要实现多态性,需要在基类中将至少一个成员函数声明为虚函数。这样,即使通过基类指针调用,也能根据实际对象的类型动态调用相应的重载版本。在C++中,使用关键字virtual来声明虚函数,如`virtual void breathe();`。如果在派生类中重写了这个函数,例如在fish类中定义`virtual void breathe() { cout << "fishbubble" << endl; }`,那么即使使用animal类型的指针,也能调用到fish类的breathe()方法。 内存模型的角度来看,当一个派生类对象被赋值给基类指针时,基类指针只存储了派生类对象的基类部分的地址。因此,即使进行类型转换,也只是访问基类的公共成员,而不会访问派生类特有的私有或保护成员。这就解释了为什么即使指针指向的是fish对象,调用的还是animal的breathe()函数。 总结来说,C++多态性是通过虚函数和早期/晚期绑定来实现的。理解这两个概念对于编写可扩展和灵活的代码至关重要。在设计程序时,合理使用多态能够提高代码的复用性和可维护性,使得程序结构更加模块化。通过虚函数,可以在不改变接口的情况下,让基类指针动态调用不同类型的子类对象上的同名方法,从而展现C++强大的继承和封装特性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

matlab处理nc文件,nc文件是1979-2020年的全球降雨数据,获取一个省份区域内的日降雨量,代码怎么写

在MATLAB中处理`.nc`(NetCDF)文件通常需要使用`netcdf`函数库,它是一个用于读写多种科学数据格式的工具。对于全球降雨数据,你可以按照以下步骤编写代码: 1. 安装必要的库(如果还没有安装): ```matlab % 如果你尚未安装 netcdf 包,可以安装如下: if ~exist('netcdf', 'dir') disp('Installing the NetCDF toolbox...') addpath(genpath(fullfile(matlabroot,'toolbox','nco'))); end ``` 2. 加载nc文件并查看其结
recommend-type

Java多线程与异常处理详解

"Java多线程与进程调度是编程领域中的重要概念,尤其是在Java语言中。多线程允许程序同时执行多个任务,提高系统的效率和响应速度。Java通过Thread类和相关的同步原语支持多线程编程,而进程则是程序的一次执行实例,拥有独立的数据区域。线程作为进程内的执行单元,共享同一地址空间,减少了通信成本。多线程在单CPU系统中通过时间片轮转实现逻辑上的并发执行,而在多CPU系统中则能实现真正的并行。 在Java中,异常处理是保证程序健壮性的重要机制。异常是程序运行时发生的错误,通过捕获和处理异常,可以确保程序在遇到问题时能够优雅地恢复或终止,而不是崩溃。Java的异常处理机制使用try-catch-finally语句块来捕获和处理异常,提供了更高级的异常类型以及finally块确保关键代码的执行。 Jdb是Java的调试工具,特别适合调试多线程程序。它允许开发者设置断点,查看变量状态,单步执行代码,从而帮助定位和解决问题。在多线程环境中,理解线程的生命周期和状态(如新建、运行、阻塞、等待、结束)以及如何控制线程的执行顺序和同步是至关重要的。 Java的多线程支持包括Thread类和Runnable接口。通过继承Thread类或者实现Runnable接口,用户可以创建自己的线程。线程间同步是多线程编程中的一大挑战,Java提供了synchronized关键字、wait()、notify()和notifyAll()等方法来解决这个问题,防止数据竞争和死锁的发生。 在实际应用中,多线程常用于网络编程、数据库访问、GUI应用程序(如Swing或JavaFX)的事件处理、服务器端的并发处理等场景。例如,一个Web服务器可能需要同时处理多个客户端请求,这时使用多线程可以显著提升性能。此外,多线程在动画制作、游戏开发、多媒体应用等领域也发挥着重要作用,因为它允许同时处理渲染、计算和用户交互等多个任务。 Java的多线程与进程调度是构建高效、健壮应用的基础,而异常处理则提升了程序的稳定性。通过深入理解和熟练运用这些概念,开发者可以创建出更加灵活和可靠的软件系统。"