import org.apache.flink.api.common.functions.OpenContext;对应的maven依赖
时间: 2024-12-22 17:33:15 浏览: 5
`import org.apache.flink.api.common.functions.OpenContext;` 这行代码是在Apache Flink(流处理框架)中使用的,它导入了一个函数接口OpenContext,通常用于设置作业级上下文。要使用这个接口,你需要添加Flink的相关Maven依赖。
在Maven项目中,你需要在pom.xml文件中添加Apache Flink的客户端依赖,例如:
```xml
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>版本号</version>
</dependency>
```
替换`版本号`为实际的Flink版本,比如 `1.14.0` 或更高版本。同时,如果你的应用涉及到JobManager操作或者其他高级功能,可能还需要额外的依赖,如运行环境支持的依赖(`flink-clients`)等。
记得根据你的项目需求选择合适的依赖版本。如果你只是需要API而不需要运行程序,仅仅引入`flink-java`就足够了。
相关问题
我构造一个程序,将kafka获取到的数据经过flink处理后保存在postgresql中,包括三个数据:时间戳、经度、纬度。同时构造一个无状态算子,即通过经纬度信息判断一个纬度29-30和经度116-117的范围内随着时间的增加有多少个对象出现在这个区域中,请帮我用ore.apache.flink构造完整的flink代码
好的,以下是一个可能的实现,其中假设 Kafka 中的数据以 JSON 格式发送,并且有一个名为 `input-topic` 的主题:
```java
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.util.serialization.JSONKeyValueDeserializationSchema;
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema;
import java.util.Properties;
public class KafkaFlinkPostgreSQLExample {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 设置 Kafka 消费者属性
Properties kafkaProps = new Properties();
kafkaProps.setProperty("bootstrap.servers", "localhost:9092");
kafkaProps.setProperty("group.id", "flink-group");
// 从 Kafka 中读取 JSON 数据
FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>(
"input-topic",
new SimpleStringSchema(),
kafkaProps
);
DataStream<Tuple3<Long, Double, Double>> inputStream = env
.addSource(kafkaConsumer)
.map(new MapFunction<String, Tuple3<Long, Double, Double>>() {
@Override
public Tuple3<Long, Double, Double> map(String value) throws Exception {
// 假设 JSON 数据格式为 { "timestamp": 1234567890, "longitude": 116.0, "latitude": 29.0 }
JSONObject json = new JSONObject(value);
long timestamp = json.getLong("timestamp");
double longitude = json.getDouble("longitude");
double latitude = json.getDouble("latitude");
return new Tuple3<>(timestamp, longitude, latitude);
}
});
// 利用 KeyBy 将数据流按照经纬度分组,并按照时间戳升序排序
DataStream<Tuple3<Long, Double, Double>> sortedStream = inputStream
.keyBy(new KeySelector<Tuple3<Long, Double, Double>, Tuple2<Double, Double>>() {
@Override
public Tuple2<Double, Double> getKey(Tuple3<Long, Double, Double> value) throws Exception {
return new Tuple2<>(value.f1, value.f2);
}
})
.name("group-by-longitude-latitude")
.sortByTimestamp(0);
// 利用 ProcessWindowFunction 计算每个窗口内经纬度范围内的对象数量
DataStream<Tuple3<Long, Double, Double>> resultStream = sortedStream
.keyBy(new KeySelector<Tuple3<Long, Double, Double>, Long>() {
@Override
public Long getKey(Tuple3<Long, Double, Double> value) throws Exception {
return value.f0;
}
})
.windowAll(TumblingEventTimeWindows.of(Time.seconds(10)))
.process(new CountObjectsInRegion());
// 将结果写入 PostgreSQL 中
Properties dbProps = new Properties();
dbProps.setProperty("url", "jdbc:postgresql://localhost:5432/dbname");
dbProps.setProperty("user", "username");
dbProps.setProperty("password", "password");
dbProps.setProperty("driver", "org.postgresql.Driver");
FlinkKafkaProducer<Tuple3<Long, Double, Double>> kafkaProducer = new FlinkKafkaProducer<>(
"output-topic",
new KeyedSerializationSchema<Tuple3<Long, Double, Double>>() {
@Override
public byte[] serializeKey(Tuple3<Long, Double, Double> element) {
return null;
}
@Override
public byte[] serializeValue(Tuple3<Long, Double, Double> element) {
return element.toString().getBytes();
}
@Override
public String getTargetTopic(Tuple3<Long, Double, Double> element) {
return null;
}
},
kafkaProps,
FlinkKafkaProducer.Semantic.EXACTLY_ONCE
);
resultStream
.addSink(new PostgreSQLSink<>(dbProps, "INSERT INTO table_name (timestamp, longitude, latitude, object_count) VALUES (?, ?, ?, ?)"));
env.execute("KafkaFlinkPostgreSQLExample");
}
}
```
上述代码中,`CountObjectsInRegion` 是一个继承 `ProcessWindowFunction` 的自定义类,用于计算每个窗口内经纬度范围内的对象数量。以下是 `CountObjectsInRegion` 类的一个可能的实现:
```java
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
public class CountObjectsInRegion extends ProcessWindowFunction<Tuple3<Long, Double, Double>, Tuple3<Long, Double, Double>, Long, TimeWindow> {
@Override
public void process(Long key, Context context, Iterable<Tuple3<Long, Double, Double>> elements, Collector<Tuple3<Long, Double, Double>> out) throws Exception {
double minLongitude = 116.0;
double maxLongitude = 117.0;
double minLatitude = 29.0;
double maxLatitude = 30.0;
int count = 0;
for (Tuple3<Long, Double, Double> element : elements) {
if (element.f1 >= minLongitude && element.f1 <= maxLongitude && element.f2 >= minLatitude && element.f2 <= maxLatitude) {
count++;
}
}
out.collect(new Tuple3<>(context.window().getEnd(), maxLongitude, maxLatitude, count));
}
}
```
上述代码中,`process` 方法中的 `elements` 参数是一个经过 KeyBy 和窗口操作后的迭代器,其中包含了所有经过该窗口的元素。`out` 参数是一个 `Collector` 对象,用于输出计算结果。
需要注意的是,上述代码中使用了 `org.apache.flink.streaming.connectors.postgres.PostgreSQLSink`,这是一个第三方库,需要手动添加到项目中。你可以通过 Maven 或 Gradle 管理依赖,具体请参考该库的文档。
java flink mysql binlog 代码 带pom.xml
以下是一个使用Java和Apache Flink连接MySQL并读取binlog的代码,并且使用了Maven进行依赖管理。请注意,这里仅提供代码示例,具体的数据库连接信息和binlog配置需要根据实际情况进行修改。
pom.xml文件内容如下:
```xml
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-core</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-jdbc_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>${mysql.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
</dependencies>
```
Java代码实现如下:
```java
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema;
import org.apache.flink.streaming.connectors.kafka.KafkaSink;
import org.apache.flink.streaming.connectors.kafka.KafkaTopicPartition;
import org.apache.flink.streaming.connectors.kafka.internals.KeyedSerializationSchemaWrapper;
import org.apache.flink.streaming.connectors.kafka.internals.KafkaTopicPartitionState;
import org.apache.flink.streaming.connectors.kafka.internals.KafkaTopicPartitionStateSentinel;
import org.apache.flink.streaming.connectors.kafka.internals.LegacyFetcher;
import org.apache.flink.streaming.connectors.kafka.internals.LegacyFetcherThread;
import org.apache.flink.streaming.connectors.kafka.internals.LegacyFlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.internals.LegacyFlinkKafkaConsumerBase;
import org.apache.flink.streaming.connectors.kafka.internals.metrics.KafkaConsumerMetricConstants;
import org.apache.flink.streaming.connectors.kafka.internals.metrics.KafkaConsumerMetricWrapper;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
public class FlinkKafkaConnector {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//设置kafka相关参数
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "test");
//创建KafkaSource
FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>("test", new SimpleStringSchema(), properties);
//将KafkaSource添加到Flink环境中
DataStream<String> stream = env.addSource(kafkaConsumer);
//将数据转换成大写字母
DataStream<String> upperStream = stream.map(new MapFunction<String, String>() {
@Override
public String map(String s) throws Exception {
return s.toUpperCase();
}
});
//将数据写回到Kafka
Properties producerProperties = new Properties();
producerProperties.setProperty(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
FlinkKafkaProducer<String> kafkaProducer = new FlinkKafkaProducer<>("test", new KeyedSerializationSchemaWrapper<>(new SimpleStringSchema()), producerProperties, FlinkKafkaProducer.Semantic.EXACTLY_ONCE);
upperStream.addSink(kafkaProducer);
//执行任务
env.execute("Flink Kafka Connector Example");
}
}
```
需要注意的是,这里使用了Flink Kafka Connector,因此需要在pom.xml文件中加入相应的依赖。此外,还需要根据实际情况修改Kafka和MySQL的连接信息。
阅读全文