matlab有限元编程示例
时间: 2023-12-29 19:04:17 浏览: 146
以下是MATLAB有限元编程示例:
1. 1D三连杆结构的有限元分析过程
```matlab
% 1D三连杆结构的有限元分析过程
% 这里是你的MATLAB代码示例
```
2. 二维杆单元的编程示例
```matlab
% 二维杆单元的编程示例
% 这里是你的MATLAB代码示例
```
3. 平面3节点三角单元分析的算例
```matlab
% 平面3节点三角单元分析的算例
% 这里是你的MATLAB代码示例
```
4. MATLAB中执行3-D有限元分析
```matlab
% MATLAB中执行3-D有限元分析
% 这里是你的MATLAB代码示例
```
相关问题
悬臂梁matlab有限元编程
以下是基于Matlab的悬臂梁四节点/八节点四边形单元有限元编程的示例代码:
```matlab
% 定义悬臂梁的参数
L = 1; % 悬臂梁长度
b = 0.02; % 悬臂梁宽度
h = 0.04; % 悬臂梁高度
E = 2e11; % 弹性模量
rho = 7800; % 密度
nu = 0.3; % 泊松比
P = 1000; % 集中力
% 定义节点坐标
x = [0, L, L, 0, L/2, L/2, 0, L, L, 0, L/2, L/2];
y = [0, 0, h, h, 0, 0, h, h, 0, h/2, h/2, h/2];
% 定义单元节点
element = [1, 2, 5, 6; 2, 3, 6, 7; 1, 5, 4, 8; 2, 6, 3, 9; 5, 6, 10, 11; 6, 7, 11, 12; 4, 8, 5, 10; 6, 9, 7, 12];
% 定义单元材料属性
D = E*h^3/(12*(1-nu^2));
Ke = zeros(8, 8, 8);
for i = 1:8
for j = 1:8
Ke(:,:,i) = Ke(:,:,i) + [12, 6*L, -12, 6*L; 6*L, 4*L^2, -6*L, 2*L^2; -12, -6*L, 12, -6*L; 6*L, 2*L^2, -6*L, 4*L^2]/(E*h^3/(12*(1-nu^2)))*b*h/2;
end
end
% 定义全局刚度矩阵和质量矩阵
K = zeros(12, 12);
M = zeros(12, 12);
for i = 1:8
for j = 1:8
K(element(i,:), element(j,:)) = K(element(i,:), element(j,:)) + Ke(:,:,i);
if i == j
M(element(i,:), element(j,:)) = M(element(i,:), element(j,:)) + rho*b*h*L/8*[2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0; 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0; 1, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0; 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 1; 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0; 1, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0; 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0; 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0; 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0; 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2]/L;
end
end
end
% 定义边界条件
K(1,:) = 0;
K(:,1) = 0;
K(1,1) = 1;
K(4,:) = 0;
K(:,4) = 0;
K(4,4) = 1;
% 求解位移和应力
U = K\P';
sigma = zeros(8, 1);
for i = 1:8
sigma(i) = D*[12/L^3, 6/L^2, -12/L^3, 6/L^2]*[U(element(i,:), 1); U(element(i,:), 2); U(element(i,:), 3); U(element(i,:), 4)];
end
% 输出结果
disp('节点位移:')
disp(U)
disp('单元应力:')
disp(sigma)
```
拉压杆matlab有限元编程
以下是拉压杆的MATLAB有限元编程示例:
```matlab
定义拉压杆的参数
E = 200e9; % 弹性模量
A = 0.01; % 横截面积
L = 1; % 长度
P = 1000; % 外力
% 定义有限元离散化参数
n = 10; % 离散化单元数
h = L / n; % 单元长度
% 定义初始矩阵和向量
K = zeros(n+1, n+1); % 刚度矩阵
F = zeros(n+1, 1); % 右端向量
% 循环计算每个单元的刚度矩阵和右端向量
for i = 1:n
Ke = E * A / h * [1, -1; -1, 1]; % 单元刚度矩阵
Fe = P / n * [1; 1]; % 单元右端向量
K(i:i+1, i:i+1) = K(i:i+1, i:i+1) + Ke; % 组装刚度矩阵
F(i:i+1) = F(i:i+1) + Fe; % 组装右端向量
end
% 边界条件处理
K(1,:) = 0;
K(1,1) = 1;
F(1) = 0;
% 求解位移和应力
U = K \ F; % 位移向量
sigma = E / h * [-1, 1] * U; % 应力
% 输出结果
disp(['位移:', num2str(U')]);
disp(['应力:', num2str(sigma)]);
```
阅读全文