tensorrt提速yolov5
时间: 2023-11-14 20:04:20 浏览: 87
yolov5-tensorrt
为了提高YOLOv5的推理速度,可以使用TensorRT进行加速。以下是使用TensorRT加速YOLOv5的步骤:
1. 首先,需要安装TensorRT并设置环境变量。可以参考NVIDIA官方文档进行安装和设置。
2. 接下来,需要将YOLOv5模型导出为ONNX格式。可以使用官方提供的export.py脚本进行导出。例如,导出yolov5s模型可以使用以下命令:
```
python export.py --weights yolov5s.pt --img 640 --batch 1 --include torchscript onnx --optimize --dynamic
```
这将在模型位置处生成yolov5s.onnx文件。
3. 然后,可以使用TensorRT进行优化和加速。可以使用以下代码进行加载和优化:
```python
import tensorrt as trt
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
def build_engine(onnx_file_path):
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.max_workspace_size = 1 << 30 # 1GB
builder.max_batch_size = 1
builder.fp16_mode = True
with open(onnx_file_path, 'rb') as model:
parser.parse(model.read())
engine = builder.build_cuda_engine(network)
return engine
```
这将返回一个已经优化的TensorRT引擎。
4. 最后,可以使用以下代码进行推理:
```python
import pycuda.driver as cuda
import pycuda.autoinit
import numpy as np
import cv2
def allocate_buffers(engine):
inputs = []
outputs = []
bindings = []
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(device_mem))
# Append to the appropriate list.
if engine.binding_is_input(binding):
inputs.append({'host': host_mem, 'device': device_mem})
阅读全文