micropython实现最大类间方差法(Otsu)
时间: 2023-09-10 14:06:09 浏览: 112
Otsu最大类间方差算法
Micropython中实现最大类间方差法(Otsu)的方法如下:
```
import utime
import sensor
import image
def otsu_threshold(img):
hist = img.get_histogram()
total_pixels = img.width() * img.height()
sum_total = 0
for i in range(256):
sum_total += i * hist[i]
sum_back = 0
w_back = 0
w_fore = 0
var_max = 0
threshold = 0
for i in range(256):
w_back += hist[i]
if w_back == 0:
continue
w_fore = total_pixels - w_back
if w_fore == 0:
break
sum_back += i * hist[i]
mean_back = sum_back / w_back
mean_fore = (sum_total - sum_back) / w_fore
var_between = w_back * w_fore * (mean_back - mean_fore) ** 2
if var_between > var_max:
var_max = var_between
threshold = i
return threshold
sensor.reset()
sensor.set_pixformat(sensor.GRAYSCALE)
sensor.set_framesize(sensor.QQVGA)
sensor.skip_frames(time=2000)
while True:
img = sensor.snapshot()
threshold_value = otsu_threshold(img)
img.binary([threshold_value])
img.show()
utime.sleep(100)
```
这段代码实现了使用Otsu算法进行图像二值化。在`otsu_threshold`函数中,首先计算图像的直方图,然后根据直方图计算类间方差。通过遍历所有可能的阈值,找到最大的类间方差对应的阈值,作为最终的二值化阈值。在主循环中,读取图像并调用`otsu_threshold`函数得到阈值,然后使用该阈值对图像进行二值化并显示。
请注意,这段代码是基于MicroPython语言编写的,并假设您已经正确配置了摄像头和传感器。确保在运行之前进行适当的硬件和软件设置。
阅读全文