nn.embedding层的作用
时间: 2023-10-13 17:06:32 浏览: 171
回答: nn.Embedding层的作用是将离散的输入(如单词或索引)映射到连续的向量空间中。这个层接受两个参数,分别是词汇表大小和嵌入向量的大小。在训练过程中,Embedding层学习将每个离散输入映射到一个连续的嵌入向量,这些嵌入向量可以捕捉到输入之间的语义关系。通过使用Embedding层,我们可以将文本或其它离散型数据转换为连续的向量表示,方便后续的模型处理和学习。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [EMBEDDING层作用](https://blog.csdn.net/qq_45602850/article/details/126929580)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [pytorch中nn.Embedding原理及使用](https://blog.csdn.net/ZhangJingHuaJYO/article/details/123372236)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [Pytorch nn.Embedding](https://blog.csdn.net/qq_40107571/article/details/128334843)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文