模拟退火算法的python和matlab详细代码示例及适用范围
时间: 2024-09-15 09:08:23 浏览: 58
模拟退火算法是一种全局优化搜索技术,常用于解决复杂的组合优化问题,如旅行商问题、0-1背包问题等。以下是Python和MATLAB的简单模拟退火算法代码示例:
**Python代码示例:**
```python
import random
import numpy as np
def acceptance_probability(T, E_new, E_old):
return min(1, np.exp(-(E_new - E_old) / T))
def simulated_annealing(fitness_func, initial_state, temperature=1000, cooling_rate=0.95, max_steps=1000):
current_state = initial_state
best_state = current_state
best_fitness = fitness_func(current_state)
for _ in range(max_steps):
new_state = make_random_neighbor(current_state)
new_fitness = fitness_func(new_state)
if new_fitness < best_fitness or random.random() < acceptance_probability(temperature, new_fitness, best_fitness):
best_state = new_state
best_fitness = new_fitness
temperature *= cooling_rate
if temperature < 1e-6:
break
return best_state, best_fitness
# 假设fitness_func是目标函数,make_random_neighbor是一个生成新状态的函数
best_solution, optimal_value = simulated_annealing(some_function, some_initial_state)
```
**MATLAB代码示例:**
```matlab
function [best_solution, optimal_value] = simulatedAnnealing(initial_state, fitness_func, varargin)
% 初始化参数
T = varargin{1};
cooling_rate = varargin{2}(1);
max_steps = varargin{2}(2);
% 记录最佳解和最优值
best_state = initial_state;
best_fitness = fitness_func(best_state);
for step = 1:max_steps
% 生成邻居状态
new_state = generateRandomNeighbor(best_state);
% 计算新的适应度
new_fitness = fitness_func(new_state);
% 接受或拒绝新状态
if (new_fitness < best_fitness || ...
rand() < exp(-(new_fitness - best_fitness) / T))
best_state = new_state;
best_fitness = new_fitness;
end
% 降低温度并检查收敛条件
T = T * cooling_rate;
if T < 1e-6
break;
end
end
% 返回结果
best_solution = best_state;
optimal_value = best_fitness;
end
```
请注意,这些代码示例仅提供了一个基本框架,实际应用中需要根据具体的优化问题定制`fitness_func`和`generateRandomNeighbor`函数。
阅读全文
相关推荐

















