遗传算法 禁忌搜索算法 混合 python
时间: 2024-01-28 22:13:52 浏览: 95
遗传算法和禁忌搜索算法是两种常见的启发式算法,用于解决优化问题,如TSP问题。下面是一个使用Python混合遗传算法和禁忌搜索算法求解TSP问题的示例:
```python
import random
# 初始化种群
def init_population(num_cities, population_size):
population = []
for _ in range(population_size):
individual = list(range(num_cities))
random.shuffle(individual)
population.append(individual)
return population
# 计算路径长度
def calculate_distance(city1, city2):
# 计算城市之间的距离,这里假设城市之间的距离已知
pass
def calculate_fitness(individual):
total_distance = 0
for i in range(len(individual)):
city1 = individual[i]
city2 = individual[(i + 1) % len(individual)]
total_distance += calculate_distance(city1, city2)
return 1 / total_distance
# 选择操作
def selection(population, num_parents):
parents = []
for _ in range(num_parents):
parent = random.choice(population)
parents.append(parent)
return parents
# 交叉操作
def crossover(parents):
child = []
# 选择一个随机的交叉点
crossover_point = random.randint(0, len(parents[0]))
child.extend(parents[0][:crossover_point])
for gene in parents[1]:
if gene not in child:
child.append(gene)
return child
# 变异操作
def mutation(individual):
# 选择两个随机的变异点
mutation_points = random.sample(range(len(individual)), 2)
individual[mutation_points[0]], individual[mutation_points[1]] = individual[mutation_points[1]], individual[mutation_points[0]]
return individual
# 禁忌搜索操作
def tabu_search(individual, tabu_list):
best_individual = individual
best_fitness = calculate_fitness(individual)
for i in range(len(individual)):
for j in range(i + 1, len(individual)):
new_individual = individual.copy()
new_individual[i], new_individual[j] = new_individual[j], new_individual[i]
new_fitness = calculate_fitness(new_individual)
if new_fitness > best_fitness and new_individual not in tabu_list:
best_individual = new_individual
best_fitness = new_fitness
return best_individual
# 主函数
def tsp_ga_ts(num_cities, population_size, num_generations):
population = init_population(num_cities, population_size)
for _ in range(num_generations):
parents = selection(population, 2)
child = crossover(parents)
child = mutation(child)
population.append(child)
population = sorted(population, key=lambda x: calculate_fitness(x), reverse=True)[:population_size]
tabu_list = []
for i in range(len(population)):
population[i] = tabu_search(population[i], tabu_list)
tabu_list.append(population[i])
if len(tabu_list) > population_size:
tabu_list.pop(0)
best_individual = max(population, key=lambda x: calculate_fitness(x))
return best_individual
# 示例使用
num_cities = 10
population_size = 100
num_generations = 1000
best_individual = tsp_ga_ts(num_cities, population_size, num_generations)
print("Best individual:", best_individual)
```
这个示例中,我们首先定义了一些基本的遗传算法和禁忌搜索算法的操作,如初始化种群、计算路径长度、计算适应度、选择、交叉、变异和禁忌搜索。然后,我们使用这些操作来实现一个求解TSP问题的混合算法。最后,我们使用示例数据进行演示,并输出最优解。
阅读全文