arima时间序列模型
时间: 2023-09-16 07:07:26 浏览: 127
arima.zip_ARIMA 预测_arima_数据预测_时间序列模型_时间预测模型
AR模型是一种常用的时间序列分析方法,用于对平稳或经过差分处理后的时间序列进行建和预测。ARIMA模型由自回归(AR)、差分(I)和移动平均(MA)三部分组成。
AR部分表示前一时刻的观测值对当前时刻的影响,用于捕捉序列的自相关结构。MA部分表示随机误差对当前时刻的影响,用于捕捉序列的随机波动。I部分表示对序列进行差分操作,用于将非平稳时间序列转化为平稳时间序列。
ARIMA模型的建模流程通常包括以下步骤:
1. 获取被观测系统的时间序列数据。
2. 绘制数据的图形,观察是否为平稳时间序列。
3. 如果不是平稳时间序列,则进行差分运算,直至得到平稳时间序列。
4. 对平稳时间序列分别求得其自相关系数(ACF)和偏自相关系数(PACF)。
5. 通过对自相关图和偏自相关图的分析,确定最佳的阶数p和q。
6. 根据确定的p和q,建立ARIMA模型。
7. 对建立的模型进行模型检验,包括对残差的白噪声检验和模型的预测能力评估。
在模型选择中,可以使用AIC(赤池信息准则)和BIC(贝叶斯信息准则)等准则评估模型的拟合优度,选择更简单的模型。
总而言之,ARIMA模型是一种用于建立和预测时间序列的统计模型,根据序列的自相关和随机波动来捕捉序列的特征。它的建模流程包括获取数据、差分处理、自相关和偏自相关分析、模型选择和模型检验等步骤。
阅读全文