D:\Anaconda\lib\site-packages\torch\nn\modules\loss.py:530: UserWarning: Using a target size (torch.Size([1, 1])) that is different to the input size (torch.Size([])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. return F.mse_loss(input, target, reduction=self.reduction) C:\Users\Lenovo\AppData\Local\Temp\ipykernel_14428\2293198162.py:470: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). state = torch.tensor(state,dtype=torch.float32).view(1, -1)
时间: 2024-04-14 22:31:11 浏览: 243
Anaconda3-5.3.1-Windows-x86-64.exe.rar
这些警告信息是由PyTorch库中的代码引发的,提醒你可能存在一些潜在的问题。具体来说:
1. 第一个警告是关于损失函数(mse_loss)的目标尺寸(target size)与输入尺寸(input size)不匹配。这可能导致广播(broadcasting)带来的结果不正确。确保目标张量(target tensor)的尺寸与输入张量(input tensor)一致,可以使用`target.view(-1)`将目标张量的尺寸调整为与输入张量相同。
2. 第二个警告是在使用`torch.tensor()`构建张量时的建议。建议使用`sourceTensor.clone().detach()`或`sourceTensor.clone().detach().requires_grad_(True)`来复制构建张量,而不是直接使用`torch.tensor()`。这是为了确保梯度计算的正确性和效率。
建议你按照警告信息的指示进行调整,以避免可能出现的错误结果。如果问题仍然存在,可以进一步检查代码中的输入和目标张量的尺寸是否正确,并确保使用适当的方法构建张量。
阅读全文