File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 820, in _apply param_applied = fn(param)
时间: 2023-08-24 08:06:46 浏览: 172
这段代码是PyTorch中的一个函数 `_apply` 的实现。该函数用于递归地将一个函数应用于模块的所有参数和子模块。
在代码中,`_apply` 函数的参数 `fn` 是一个用于处理参数的函数。函数会被应用于模块的每个参数,并返回处理后的参数。
在这行代码中,`fn` 被命名为 `param_applied`,它代表一个处理后的参数。这行代码将处理后的参数赋值给 `param`,完成参数的应用过程。
相关问题
Traceback (most recent call last): File "D:/LPRNet_Pytorch-master/LPRNet_Pytorch-master/train_LPRNet.py", line 268, in <module> train() File "D:/LPRNet_Pytorch-master/LPRNet_Pytorch-master/train_LPRNet.py", line 102, in train lprnet.to(device) File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 899, in to return self._apply(convert) File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 570, in _apply module._apply(fn) File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 570, in _apply module._apply(fn) File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 593, in _apply param_applied = fn(param) File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 897, in convert return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking) File "D:\Anaconda\lib\site-packages\torch\cuda\__init__.py", line 208, in _lazy_init raise AssertionError("Torch not compiled with CUDA enabled") AssertionError: Torch not compiled with CUDA enabled
这个错误是因为你的torch没有启用CUDA。在训练LPRNet时需要使用GPU加速,因此需要启用CUDA。你可以检查一下你的torch是否安装了CUDA版本,并且在代码中使用了正确的版本。如果你的torch没有安装CUDA版本,你需要重新安装一个CUDA版本的torch。如果你已经安装了CUDA版本的torch,你可以尝试在代码中添加以下代码来启用CUDA:
```
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
```
然后在将模型转移到设备时使用:
```
lprnet.to(device)
```
这应该会解决你的问题。
Traceback (most recent call last): File "D:/LPRNet_Pytorch-master/LPRNet_Pytorch-master/train_LPRNet.py", line 268, in <module> train() File "D:/LPRNet_Pytorch-master/LPRNet_Pytorch-master/train_LPRNet.py", line 107, in train lprnet.load_state_dict(torch.load(args.pretrained_model)) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 608, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 787, in _legacy_load result = unpickler.load() File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 743, in persistent_load deserialized_objects[root_key] = restore_location(obj, location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 175, in default_restore_location result = fn(storage, location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 151, in _cuda_deserialize device = validate_cuda_device(location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 135, in validate_cuda_device raise RuntimeError('Attempting to deserialize object on a CUDA ' RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location=torch.device('cpu') to map your storages to the CPU.
这个错误是因为你在尝试从一个CUDA设备上加载模型,但是当前的机器上没有GPU。你需要使用`torch.load`函数时传入`map_location=torch.device('cpu')`的参数来将模型加载到CPU上。 例如:
```python
lprnet.load_state_dict(torch.load(args.pretrained_model, map_location=torch.device('cpu')))
```
阅读全文