Traceback (most recent call last): File "C:\Users\Administrator\Desktop\轨迹训练\Transformer_V2_radicla_test.py", line 146, in <module> main() File "C:\Users\Administrator\Desktop\轨迹训练\Transformer_V2_radicla_test.py", line 131, in main train_losses, val_losses = train(model, optimizer, criterion, traindataloader, valdataloader, epochs) # 模型训练 File "C:\Users\Administrator\Desktop\轨迹训练\Transformer_V2_radicla_test.py", line 65, in train pred = model(input_data, target) File "D:\anaconda2\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "C:\Users\Administrator\Desktop\轨迹训练\Transformer_V2_radicla_test.py", line 42, in forward output = self.decoder(tgt, memory) File "D:\anaconda2\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "D:\anaconda2\lib\site-packages\torch\nn\modules\transformer.py", line 291, in forward output = mod(output, memory, tgt_mask=tgt_mask, File "D:\anaconda2\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "D:\anaconda2\lib\site-packages\torch\nn\modules\transformer.py", line 577, in forward x = self.norm2(x + self._mha_block(x, memory, memory_mask, memory_key_padding_mask)) File "D:\anaconda2\lib\site-packages\torch\nn\modules\transformer.py", line 594, in _mha_block x = self.multihead_attn(x, mem, mem, File "D:\anaconda2\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "D:\anaconda2\lib\site-packages\torch\nn\modules\activation.py", line 1153, in forward attn_output, attn_output_weights = F.multi_head_attention_forward( File "D:\anaconda2\lib\site-packages\torch\nn\functional.py", line 5122, in multi_head_attention_forward k = k.contiguous().view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1) RuntimeError: shape '[10, 297, 1]' is invalid for input of size 300什么原因,如何解决?

时间: 2023-07-22 19:08:45 浏览: 93
根据错误信息,问题出现在 `multi_head_attention_forward` 函数中的维度不匹配。具体地,在 `k` 张量上的操作导致了错误,要求 `k` 的形状是 `[10, 297, 1]`,但是实际输入的形状是 `[10, 300, 1]`。 这个问题可能是由于 `k` 张量的尺寸不正确导致的。根据你提供的代码,`k` 张量应该是来自前一层的输出,并且应该具有形状 `(batch_size, sequence_len, feature_dim)`。然而,错误信息中显示 `k` 的形状为 `[10, 300, 1]`,而不是预期的 `[10, 297, 1]`。 要解决这个问题,请检查前一层的输出张量的维度是否正确,并确保与模型中的期望维度匹配。如果前一层的输出维度不正确,可能需要调整模型或数据预处理的部分。 另外,你可以检查与输入数据相关的其他部分,如 `tgt_mask`、`memory_mask` 和 `memory_key_padding_mask`,确保它们的形状和尺寸与模型的期望相匹配。 请仔细检查这些方面,并确保输入张量和相关参数的形状和尺寸正确匹配,以解决这个错误。如果问题仍然存在,请提供更多相关的代码和错误信息,以便更好地帮助你解决问题。
相关问题

Traceback ( most recent call last ) :File " C:/python/kfc.py " , line 8

Traceback (most recent call last): File "C:/python/kfc.py", line 8 这是Python中的错误追踪信息,通常在程序出现错误时会显示。它告诉我们在哪个文件的哪一行出现了错误。 具体来说,"Traceback (most recent call last)" 表示错误追踪的开始,它告诉我们下面的信息是最近一次调用的错误。 "File "C:/python/kfc.py", line 8" 表示错误发生在文件 "C:/python/kfc.py" 的第8行。 如果你想解决这个错误,可以打开 "C:/python/kfc.py" 文件,并检查第8行的代码,看看是否有语法错误或逻辑错误。

Traceback (most recent call last): File C:\Users\小杨\Desktop\Yang\Yang\lstm.py, line 78, in <module>

这是一个Python中的错误追踪信息,称为Traceback。它会显示在程序运行过程中发生错误的位置和原因。在你提供的例子中,错误发生在文件"C:\Users\小杨\Desktop\Yang\Yang\lstm.py"的第78行。 Traceback信息通常包括以下几个部分: 1. 错误类型:指示错误的类型,例如NameError、TypeError等。 2. 错误位置:指示错误发生的文件和行号。 3. 错误原因:提供了导致错误的具体原因。 要解决这个问题,你可以检查lstm.py文件的第78行,并查看是否有语法错误、变量未定义或其他可能导致错误的问题。

相关推荐

最新推荐

recommend-type

Mac下anaconda中Spyder打开报错Traceback(most recent call last)…问题

编程小白刚入门没多久,然后发现Spyder打不开,窗口弹出报错如下图, 但打开Jupter notebook等又是好的,最近电脑新装的软件比较多(MySQL、Tableau等),又清理了磁盘。不知道是什么问题导致的,尝试了网上说的方法...
recommend-type

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节 线性代数的核心问题是求解方程组。这些方程都是线性的,即未知数仅与数相乘——我们绝不会 遇见 x 乘以 y。我们的第一个线性方程组较小。接下来你来看看它引申出多远: 两个方程 两个未知数 x − 2y = 1 3x + 2y = 11 (1) 我们一次从一个行开始。第一个方程 x − 2y = 1 得出了 xy 平面的一条直线。由于点 x = 1, y = 0 解 出该方程,因此它在这条直线上。因为 3 − 2 = 1,所以点 x = 3, y = 1 也在这条直线上。若我们选择 x = 101,那我们求出 y = 50。 这条特定直线的斜率是 12,是因为当 x 变化 2 时 y 增加 1。斜率在微积分中很重要,然而这是线 性代数! 图 2.1 将展示第一条直线 x − 2y = 1。此“行图”中的第二条直线来自第二个方程 3x + 2y = 11。你 不能错过两条线的交点 x = 3, y = 1。点 (3, 1) 位于两条线上并且解出两个方程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

识别MATLAB微分方程求解中的混沌行为:分析非线性方程混沌行为的实用技巧

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程是描述物理、工程和金融等领域中动态系统的数学模型。MATLAB提供了强大的工具来求解微分方程,包括内置求解器和自定义函数
recommend-type

physon如何做ERP系统

作为一个AI语言模型,我可以给您提供一些基本的建议和思路: 1.明确需求和目标:在开始开发ERP系统之前,需要明确您的业务需求和目标,了解您的业务流程、流程数据、员工角色和权限、财务管理等方面的要求,这样才能更好的设计和开发ERP系统。 2.选择技术框架和开发工具:选择合适的技术框架和开发工具是ERP系统开发的关键。选择一种流行的技术框架和工具可以提高开发效率和质量。 3.设计数据库:ERP系统需要一个功能强大的数据库来存储数据。设计数据库需要考虑数据的完整性、安全性和可扩展性。 4.设计系统架构:系统架构是ERP系统的骨架,需要考虑系统的可扩展性、可维护性和性能。 5.开发和测试:
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

探索MATLAB微分方程求解中的分岔分析:揭示方程动态行为的秘密

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程在科学、工程和金融等领域有着广泛的应用。MATLAB作为一种强大的数值计算软件,提供了丰富的微分方程求解工具。本章将概述
recommend-type

ic验证工作中如何在平台中加入发数的总数?

在进行IC验证工作时,可以通过以下步骤在平台中加入发数的总数: 1. 打开IC验证工具(如Cadence Virtuoso)并打开对应的设计文件。 2. 在设计文件中选择需要计算发数的部分电路或模块。 3. 在IC验证工具中打开时序分析工具(如Cadence Tempus)。 4. 在时序分析工具中设置好时钟频率、时钟周期等参数。 5. 执行时序分析,生成时序报告。 6. 在时序报告中查找发数统计信息,将其记录下来。 7. 将发数统计信息添加到平台中,以便在之后的仿真或验证中使用。 需要注意的是,发数统计信息可能因为设计文件的不同而有所差异,需要根据实际情况进行调整和计算。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。