基于opencv的情绪检测
时间: 2024-01-06 11:24:49 浏览: 145
基于OpenCV的情绪检测可以通过以下步骤实现:
1. 导入所需的库和模型:
```python
import cv2
import numpy as np
from keras.models import load_model
```
2. 加载人脸检测器和情绪分类器模型:
```python
face_cascade = cv2.CascadeClassifier('path/to/haarcascade_frontalface_default.xml')
emotion_model = load_model('path/to/emotion_model.h5')
emotion_labels = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
```
3. 定义一个函数来检测人脸并预测情绪:
```python
def detect_emotion(frame):
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
for (x, y, w, h) in faces:
face_roi = gray[y:y+h, x:x+w]
face_roi = cv2.resize(face_roi, (48, 48))
face_roi = face_roi.astype('float') / 255.0
face_roi = np.expand_dims(face_roi, axis=0)
face_roi = np.expand_dims(face_roi, axis=-1)
emotion_prediction = emotion_model.predict(face_roi)[0]
emotion_label = emotion_labels[np.argmax(emotion_prediction)]
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.putText(frame, emotion_label, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
return frame
```
4. 打开摄像头并实时进行情绪检测:
```python
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
if not ret:
break
frame = detect_emotion(frame)
cv2.imshow('Emotion Detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
```
这样,基于OpenCV的情绪检测系统就可以实现了。
阅读全文