python 使用阿基米德算法估算圆周率
时间: 2024-09-24 19:18:23 浏览: 79
蒙特卡洛求圆周率_蒙特卡洛_圆周率_
5星 · 资源好评率100%
Python中可以使用阿基米德算法(Archimedes' method),也称为切线近似法,来估算圆周率π。这个算法基于古希腊数学家阿基米德的思想,通过构造越来越精确的圆内接和外切正多边形来逼近圆的面积。
基本步骤如下:
1. **选择边数**:首先确定一个正多边形,比如n边形,其内部将形成一个与圆相切的凸多边形。
2. **计算多边形面积**:对于n边形,它的面积可以用公式`P * a / 4`来估算,其中P是多边形的周长,a是每个顶点到中心的距离(即半径)。
3. **建立与圆的关系**:因为多边形的面积小于圆的面积,而多边形越大,与圆越接近,所以当多边形足够大时,它的面积接近πr²。因此,我们可以设置一个条件,如两个连续多边形面积差小于某个阈值,认为已经足够精确。
4. **循环迭代**:不断增大边数n,更新多边形的周长和面积,直到达到预设精度。
以下是一个简单的Python示例实现:
```python
import math
def estimate_pi(n):
side_length = 1 # 初始边长等于半径,这里简化假设为1
perimeter = n * side_length
polygon_area = (perimeter * side_length) / 4
circle_area = math.pi * side_length ** 2
while abs(polygon_area - circle_area) > 0.00001: # 设置一个非常小的误差范围
side_length += 1
perimeter = n * side_length
polygon_area = (perimeter * side_length) / 4
return polygon_area * 4 / perimeter # 因为实际面积是πr²,估算值乘以4除以周长得π
# 调用函数并打印结果
pi_estimate = estimate_pi(1000000)
print(f"估算的圆周率:{pi_estimate}")
阅读全文