编写代码,使用pytorch geometric实现GAT处理Cora数据集
时间: 2024-11-09 09:26:05 浏览: 50
Cora数据集,可供加载
在PyTorch Geometric (PyG)库中,Graph Attention Network (GAT)是一种流行的图神经网络模型,用于处理节点分类任务。下面是一个简单的示例,展示了如何使用GAT处理Cora数据集:
```python
# 首先,你需要安装必要的库
import torch
import torch.nn as nn
from torch_geometric.data import DataLoader
from torch_geometric.datasets import Planetoid
# 加载Cora数据集
dataset = Planetoid(root='./data', name='Cora')
train_dataset, test_dataset = dataset[0], dataset[1]
# 数据加载器
train_loader = DataLoader(train_dataset, batch_size=64)
test_loader = DataLoader(test_dataset, batch_size=64)
# 定义GAT模型
class GAT(nn.Module):
def __init__(self):
super(GAT, self).__init__()
self.conv1 = GraphConv(in_channels=dataset.num_features,
out_channels=8, heads=8, concat=True)
self.conv2 = GraphConv(in_channels=8 * 8, out_channels=16, heads=1, concat=False)
self.fc = nn.Linear(16, dataset.num_classes)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = F.relu(self.conv1(x, edge_index))
x = F.dropout(x, p=0.6, training=self.training)
x = self.conv2(x, edge_index)
x = F.log_softmax(self.fc(x.mean(dim=1)), dim=1)
return x
model = GAT()
# 使用交叉熵损失函数和Adam优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.005)
# 训练模型
num_epochs = 200
for epoch in range(num_epochs):
for data in train_loader:
optimizer.zero_grad()
out = model(data)
loss = criterion(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
# 测试模型
model.eval()
with torch.no_grad():
test_acc = (model(test_dataset)[test_dataset.test_mask] == test_dataset.y[test_dataset.test_mask]).float().mean()
print(f"Test accuracy: {test_acc.item():.4f}")
阅读全文