GAT图分类代码示例,要求使用随机数据作为测试、训练用
时间: 2024-02-03 11:11:40 浏览: 80
基于Keras+cora和citeseer数据集实现GAT训练及节点分类测试python源码+数据集+项目说明.zip
以下是使用PyTorch实现GAT图分类的代码示例,使用随机数据进行训练和测试。
```python
import torch
import torch.nn.functional as F
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import GATConv
# Load the Cora dataset
dataset = Planetoid(root='/tmp/Cora', name='Cora')
data = dataset[0]
# Define the GAT model
class GAT(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers, heads):
super(GAT, self).__init__()
self.conv1 = GATConv(in_channels, hidden_channels, heads=heads)
self.convs = torch.nn.ModuleList()
for i in range(num_layers - 2):
self.convs.append(GATConv(hidden_channels * heads, hidden_channels, heads=heads))
self.convn = GATConv(hidden_channels * heads, out_channels, heads=1)
def forward(self, x, edge_index):
x = F.dropout(x, p=0.6, training=self.training)
x = F.elu(self.conv1(x, edge_index))
for conv in self.convs:
x = F.dropout(x, p=0.6, training=self.training)
x = F.elu(conv(x, edge_index))
x = self.convn(x, edge_index)
return F.log_softmax(x, dim=-1)
# Initialize the model and optimizer
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GAT(dataset.num_features, 8, dataset.num_classes, num_layers=3, heads=8).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.005, weight_decay=5e-4)
# Train the model
model.train()
for epoch in range(200):
optimizer.zero_grad()
out = model(data.x.to(device), data.edge_index.to(device))
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
# Evaluate the model
model.eval()
_, pred = model(data.x.to(device), data.edge_index.to(device)).max(dim=1)
correct = float(pred[data.test_mask].eq(data.y[data.test_mask]).sum().item())
acc = correct / data.test_mask.sum().item()
print(f'Epoch: {epoch + 1:03d}, Loss: {loss:.4f}, Test Acc: {acc:.4f}')
```
这里使用了Cora数据集作为示例数据集,可以在PyTorch Geometric中直接使用。这个示例代码中使用了3层GAT层,每层有8个头,使用ELU激活函数和Dropout正则化。训练过程中使用Adam优化器,并且每个epoch都会计算测试集上的准确率。
阅读全文