GAT代码示例
时间: 2023-07-02 22:07:02 浏览: 135
以下是一个简单的GAT代码示例,用于节点分类任务:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class GATLayer(nn.Module):
def __init__(self, in_dim, out_dim):
super(GATLayer, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.W = nn.Linear(in_dim, out_dim)
self.a = nn.Linear(2 * out_dim, 1)
def forward(self, h, adj):
Wh = self.W(h)
a_input = self._prepare_attentional_mechanism_input(Wh)
e = F.leaky_relu(self.a(a_input))
attention = F.softmax(e, dim=1)
h_prime = torch.matmul(attention.transpose(1, 2), Wh).squeeze(1)
return h_prime
def _prepare_attentional_mechanism_input(self, Wh):
N = Wh.size()[0]
Wh_repeated_in_chunks = Wh.repeat_interleave(N, dim=0)
Wh_repeated_alternating = Wh.repeat(N, 1)
all_combinations_matrix = torch.cat([Wh_repeated_in_chunks, Wh_repeated_alternating], dim=1)
return all_combinations_matrix.view(N, N, 2 * self.out_dim)
class GATNet(nn.Module):
def __init__(self, in_dim, hidden_dim, out_dim):
super(GATNet, self).__init__()
self.layer1 = GATLayer(in_dim, hidden_dim)
self.layer2 = GATLayer(hidden_dim, out_dim)
def forward(self, x, adj):
x = F.dropout(x, 0.5, training=self.training)
x = F.elu(self.layer1(x, adj))
x = F.dropout(x, 0.5, training=self.training)
x = self.layer2(x, adj)
return F.log_softmax(x, dim=1)
```
这里定义了一个GAT层和一个GAT网络。GAT层包含一个线性变换和一个注意力机制,用于计算节点之间的重要性。GAT网络由两个GAT层组成,用于将节点嵌入分类空间。在前向传播过程中,节点特征被输入到网络中,并在每个GAT层之间进行dropout操作。最后,输出通过log_softmax进行归一化。
阅读全文