pyhive中在A文件中实现异步提交hive sql,B文件实现异步监测A文件中执行的sql
时间: 2024-10-13 11:13:45 浏览: 28
在PyHive中,如果你想要实现在两个文件A和B之间异步地提交Hive SQL并监控其执行状态,可以采用Python的异步IO库如`asyncio`以及`aiohttp`来配合Hive的HTTP REST API。以下是简要步骤:
**A文件(submit.py)- 异步提交SQL:**
```python
import asyncio
from aiohttp import ClientSession
class HiveAsyncSubmitter:
async def submit_query(self, query):
url = "your_hive_server/rest/v1/query"
headers = {'Content-Type': 'application/json'}
data = {"q": query}
async with ClientSession() as session:
async with session.post(url, json=data, headers=headers) as response:
return await response.json()
# 使用示例
async def main():
submitter = HiveAsyncSubmitter()
query = "YOUR_HIVE_QUERY"
result = await submitter.submit_query(query)
print(f"Query submitted: {result}")
if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
```
**B文件(monitor.py)- 异步监控查询状态:**
```python
import asyncio
from aiohttp import ClientSession
import time
class HiveAsyncMonitor:
async def get_query_status(self, query_id):
url = f"your_hive_server/rest/v1/query/{query_id}"
headers = {'Accept': 'application/json'}
async with ClientSession() as session:
async with session.get(url, headers=headers) as response:
if response.status == 200:
status_data = await response.json()
return status_data['state']
else:
raise Exception(f"Failed to retrieve status: {response.status}")
# 使用示例
async def monitor_query(submitter, query_id):
while True:
status = await HiveAsyncMonitor().get_query_status(query_id)
print(f"Status: {status}")
if status in ['SUCCEEDED', 'FAILED']:
break
await asyncio.sleep(5)
# 需要在main函数中创建submitter实例,并在查询提交后获取查询ID以启动监控
async def main():
submitter = HiveAsyncSubmitter()
query_result = await submitter.submit_query("YOUR_HIVE_QUERY")
query_id = query_result['id']
asyncio.create_task(monitor_query(submitter, query_id))
if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
```
**相关问题--:**
1. PyHive的REST API具体是什么样子的?
2. 如果A文件中的任务出错,如何处理异常?
3. 怎么确保B文件能实时接收到查询的状态更新?
阅读全文