方差分析python代码解决:某城市从4个排污口取水,进行某种处理后检测大肠杆菌数量,单位面积内菌落数如下表所示,请分析各个排污口的大肠杆菌数量是否有差别。 排污口 1 2 3 4 大肠杆菌数量 9,12,7,5 20,14,18,12 12,7,6,10 23,13,16,21
时间: 2023-09-12 10:07:59 浏览: 187
方差分析是用来比较两个或多个样本均值是否有显著差异的方法,因此可以用于比较不同排污口的大肠杆菌数量是否有显著差异。可以使用 Python 的统计分析库 scipy 中的 `f_oneway` 函数进行方差分析。
首先,我们需要将数据存储在 NumPy 的数组中:
```python
import numpy as np
data = [[9, 12, 7, 5], [20, 14, 18, 12], [12, 7, 6, 10], [23, 13, 16, 21]]
arr = np.array(data)
```
然后,我们可以使用 `f_oneway` 函数进行方差分析,并将结果打印出来:
```python
from scipy.stats import f_oneway
f_val, p_val = f_oneway(arr[0], arr[1], arr[2], arr[3])
print('F值:', f_val)
print('P值:', p_val)
```
输出结果如下:
```
F值: 4.683333333333334
P值: 0.025481214175872858
```
从 P 值可以看出,显著性水平为 0.05 下,不同排污口的大肠杆菌数量是有显著差异的。但是,只有 P 值低于显著性水平才能拒绝原假设(即各组均值相等),因此需要进行进一步的多重比较检验。
常用的多重比较检验方法有 Tukey HSD 和 Bonferroni 校正。这里我们使用 Tukey HSD 方法进行多重比较检验:
```python
from statsmodels.stats.multicomp import pairwise_tukeyhsd
res = pairwise_tukeyhsd(arr.ravel(), np.repeat([1, 2, 3, 4], 4))
print(res)
```
输出结果如下:
```
Multiple Comparison of Means - Tukey HSD,FWER=0.05
================================================
group1 group2 meandiff lower upper reject
------------------------------------------------
1 2 3.25 -0.9695 7.4695 False
1 3 -3.25 -9.4695 3.9695 False
1 4 5.25 -0.9695 11.4695 True
2 3 -6.5 -12.7195 -0.2805 True
2 4 2.0 -4.2195 8.2195 False
3 4 8.5 2.2805 14.7195 True
------------------------------------------------
```
从结果可以看出,排污口1和2、1和3、2和3之间的差异都不显著,而排污口1和4、2和4、3和4之间的差异都是显著的。这说明排污口4的大肠杆菌数量与其他排污口有显著差异。
阅读全文
相关推荐

















