axs[0,0].yaxis.set_ticks_position('both')全部参数
时间: 2024-06-08 12:09:47 浏览: 123
`axs[0,0].yaxis.set_ticks_position('both')`设置了当前子图(subplot)的y轴刻度线的位置为“both”,即刻度线显示在y轴的左右两侧。该方法的完整参数如下:
- `which`: 可选值为 `'both'`, `'left'`, `'right'`, `'none'`。用于设置哪些刻度线应该显示。
- `*`, `label*`: 用于设置其他属性,例如标签的位置等。
更多信息可以参考 Matplotlib 的官方文档:https://matplotlib.org/stable/api/axis_api.html#matplotlib.axis.Axis.set_ticks_position。
相关问题
解释这段代码fig, axs = plt.subplots(nrows=len(x_test), figsize=(6, 2.5*len(x_test))) for i in range(len(x_test)): axs[i].matshow(attention_weights[i].T, cmap='viridis') axs[i].set_xlabel('Input sequence') axs[i].set_ylabel('Attention weight') axs[i].set_xticks(range(x_test.shape[1])) axs[i].set_yticks(range(INPUT_DIM)) axs[i].xaxis.set_ticks_position('bottom') plt.tight_layout() plt.show()
这段代码主要用于可视化注意力权重矩阵。它首先创建了一个 $len(x\_test)$ 行、每行含有一个 $2.5 \times$ 输入序列长度的图形画布,其中 `nrows=len(x_test)` 表示画布的行数,`figsize=(6, 2.5*len(x_test))` 表示画布的大小。
接下来,`for` 循环遍历每个测试样本,将其对应的注意力权重矩阵绘制成热图,使用 `axs[i].matshow(attention_weights[i].T, cmap='viridis')` 实现。其中,`attention_weights[i]` 表示第 i 个测试样本的注意力权重矩阵,`.T` 是转置操作,`cmap='viridis'` 表示使用 viridis 颜色映射。
然后,设置绘图的标签和刻度,`axs[i].set_xlabel('Input sequence')` 表示设置 x 轴标签为 "Input sequence",`axs[i].set_ylabel('Attention weight')` 表示设置 y 轴标签为 "Attention weight",`axs[i].set_xticks(range(x_test.shape[1]))` 和 `axs[i].set_yticks(range(INPUT_DIM))` 表示设置 x 和 y 轴的刻度。`axs[i].xaxis.set_ticks_position('bottom')` 表示设置 x 轴的刻度位置在底部。
最后,使用 `plt.tight_layout()` 使图形更美观,并使用 `plt.show()` 显示图形。
def draw_stats(self, vals, vals1, vals2, vals3, vals4, vals5, vals6): self.ax1 = plt.subplot(self.gs[0, 0]) self.ax1.plot(vals) self.ax1.set_xlim(self.xlim) locs = self.ax1.get_xticks() locs[0] = self.xlim[0] locs[-1] = self.xlim[1] self.ax1.set_xticks(locs) self.ax1.use_sticky_edges = False self.ax1.set_title(f'Connected Clients Ratio') self.ax2 = plt.subplot(self.gs[1, 0]) self.ax2.plot(vals1) self.ax2.set_xlim(self.xlim) self.ax2.set_xticks(locs) self.ax2.yaxis.set_major_formatter(FuncFormatter(format_bps)) self.ax2.use_sticky_edges = False self.ax2.set_title('Total Bandwidth Usage') self.ax3 = plt.subplot(self.gs[2, 0]) self.ax3.plot(vals2) self.ax3.set_xlim(self.xlim) self.ax3.set_xticks(locs) self.ax3.use_sticky_edges = False self.ax3.set_title('Bandwidth Usage Ratio in Slices (Averaged)') self.ax4 = plt.subplot(self.gs[3, 0]) self.ax4.plot(vals3) self.ax4.set_xlim(self.xlim) self.ax4.set_xticks(locs) self.ax4.use_sticky_edges = False self.ax4.set_title('Client Count Ratio per Slice') self.ax5 = plt.subplot(self.gs[0, 1]) self.ax5.plot(vals4) self.ax5.set_xlim(self.xlim) self.ax5.set_xticks(locs) self.ax5.use_sticky_edges = False self.ax5.set_title('Coverage Ratio') self.ax6 = plt.subplot(self.gs[1, 1]) self.ax6.plot(vals5) self.ax6.set_xlim(self.xlim) self.ax6.set_xticks(locs) self.ax6.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) self.ax6.use_sticky_edges = False self.ax6.set_title('Block ratio') self.ax7 = plt.subplot(self.gs[2, 1]) self.ax7.plot(vals6) self.ax7.set_xlim(self.xlim) self.ax7.set_xticks(locs) self.ax7.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) self.ax7.use_sticky_edges = False self.ax7.set_title('Handover ratio')修改为一张张输出图片
好的,你可以将这段代码修改为:
```python
def draw_stats(self, vals, vals1, vals2, vals3, vals4, vals5, vals6, save_path):
fig, axs = plt.subplots(4, 2, figsize=(16, 16))
axs[0, 0].plot(vals)
axs[0, 0].set_xlim(self.xlim)
locs = axs[0, 0].get_xticks()
locs[0] = self.xlim[0]
locs[-1] = self.xlim[1]
axs[0, 0].set_xticks(locs)
axs[0, 0].use_sticky_edges = False
axs[0, 0].set_title(f'Connected Clients Ratio')
axs[1, 0].plot(vals1)
axs[1, 0].set_xlim(self.xlim)
axs[1, 0].set_xticks(locs)
axs[1, 0].yaxis.set_major_formatter(FuncFormatter(format_bps))
axs[1, 0].use_sticky_edges = False
axs[1, 0].set_title('Total Bandwidth Usage')
axs[2, 0].plot(vals2)
axs[2, 0].set_xlim(self.xlim)
axs[2, 0].set_xticks(locs)
axs[2, 0].use_sticky_edges = False
axs[2, 0].set_title('Bandwidth Usage Ratio in Slices (Averaged)')
axs[3, 0].plot(vals3)
axs[3, 0].set_xlim(self.xlim)
axs[3, 0].set_xticks(locs)
axs[3, 0].use_sticky_edges = False
axs[3, 0].set_title('Client Count Ratio per Slice')
axs[0, 1].plot(vals4)
axs[0, 1].set_xlim(self.xlim)
axs[0, 1].set_xticks(locs)
axs[0, 1].use_sticky_edges = False
axs[0, 1].set_title('Coverage Ratio')
axs[1, 1].plot(vals5)
axs[1, 1].set_xlim(self.xlim)
axs[1, 1].set_xticks(locs)
axs[1, 1].yaxis.set_major_formatter(FormatStrFormatter('%.3f'))
axs[1, 1].use_sticky_edges = False
axs[1, 1].set_title('Block ratio')
axs[2, 1].plot(vals6)
axs[2, 1].set_xlim(self.xlim)
axs[2, 1].set_xticks(locs)
axs[2, 1].yaxis.set_major_formatter(FormatStrFormatter('%.3f'))
axs[2, 1].use_sticky_edges = False
axs[2, 1].set_title('Handover ratio')
plt.tight_layout()
plt.savefig(save_path)
plt.show()
```
这样就可以一张张输出图片了,你只需要传入一个保存路径参数 `save_path` 即可。
阅读全文