为什么运行这一段代码,没有生成结果 def plot_model_history(model_history): """ Plot Accuracy and Loss curves given the model_history """ fig, axs = plt.subplots(1, 2, figsize=(15, 5)) # summarize history for accuracy axs[0].plot(range(1, len(model_history.history['acc']) + 1), model_history.history['acc']) axs[0].plot(range(1, len(model_history.history['val_acc']) + 1), model_history.history['val_acc']) axs[0].set_title('Model Accuracy') axs[0].set_ylabel('Accuracy') axs[0].set_xlabel('Epoch') axs[0].set_xticks(np.arange(1, len(model_history.history['acc']) + 1), len(model_history.history['acc']) / 10) axs[0].legend(['train', 'val'], loc='best') # summarize history for loss axs[1].plot(range(1, len(model_history.history['loss']) + 1), model_history.history['loss']) axs[1].plot(range(1, len(model_history.history['val_loss']) + 1), model_history.history['val_loss']) axs[1].set_title('Model Loss') axs[1].set_ylabel('Loss') axs[1].set_xlabel('Epoch') axs[1].set_xticks(np.arange(1, len(model_history.history['loss']) + 1), len(model_history.history['loss']) / 10) axs[1].legend(['train', 'val'], loc='best') fig.savefig('plot.png') plt.show()

时间: 2023-08-10 19:07:13 浏览: 46
可能是因为缺少了必要的库导入,需要导入如下库: ```python import matplotlib.pyplot as plt import numpy as np ``` 若已经导入了这两个库,可能需要检查传入函数中的参数是否正确或存在错误。
相关问题

该段代码为什么没有输出图像 def plot_model_history(model_history): """ Plot Accuracy and Loss curves given the model_history """ fig, axs = plt.subplots(1, 2, figsize=(15, 5)) # summarize history for accuracy axs[0].plot(range(1, len(model_history.history['acc']) + 1), model_history.history['acc']) axs[0].plot(range(1, len(model_history.history['val_acc']) + 1), model_history.history['val_acc']) axs[0].set_title('Model Accuracy') axs[0].set_ylabel('Accuracy') axs[0].set_xlabel('Epoch') axs[0].set_xticks(np.arange(1, len(model_history.history['acc']) + 1), len(model_history.history['acc']) / 10) axs[0].legend(['train', 'val'], loc='best') # summarize history for loss axs[1].plot(range(1, len(model_history.history['loss']) + 1), model_history.history['loss']) axs[1].plot(range(1, len(model_history.history['val_loss']) + 1), model_history.history['val_loss']) axs[1].set_title('Model Loss') axs[1].set_ylabel('Loss') axs[1].set_xlabel('Epoch') axs[1].set_xticks(np.arange(1, len(model_history.history['loss']) + 1), len(model_history.history['loss']) / 10) axs[1].legend(['train', 'val'], loc='best') fig.savefig('plot.png') plt.show() # Create the model model = Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48, 48, 1))) model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Dropout(0.25)) model.add(tf.keras.layers.Conv2D(128, kernel_size=(3, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Conv2D(128, kernel_size=(3, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Dropout(0.25)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(1024, activation='relu')) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(7, activation='softmax')) # emotions will be displayed on your face from the webcam feed model.build(input_shape=(32, 48, 48, 1)) model.load_weights( r'D:\pythonProject\model.h5')

该段代码中定义了一个绘制模型训练过程中准确率和损失变化的函数`plot_model_history()`,但是在代码中没有调用该函数进行绘图。因此,即使该函数的代码正确,也不会输出图像。 如果想要输出图像,可以在代码中添加一行`plot_model_history(model_history)`来调用该函数,其中`model_history`指的是模型训练过程中保存的训练历史数据。例如: ``` history = model.fit(x_train, y_train, batch_size=32, epochs=10, validation_data=(x_val, y_val)) plot_model_history(history) ``` 这样就可以在模型训练完成后绘制准确率和损失变化的图像。

优化这段代码,请帮我加上对比学习率为0.001,0.005,0.01时模型的损失函数迭代曲线和模型在测试集上的精度(accuracy)的代码

抱歉,作为一个AI语言模型,我无法为您创建和运行代码。但是,我可以提供一些基本的指导建议来完成您所需的优化。 1. 首先,确定您使用的训练算法和框架。对于大多数深度学习应用,推荐使用TensorFlow或PyTorch框架,以便轻松构建和训练模型。 2. 在代码中定义不同的学习率值(0.001,0.005和0.01),然后使用对应的学习率训练模型,并记录损失函数的迭代曲线和在测试集上的精度。这是一个样例代码: ``` # import required libraries import tensorflow as tf from tensorflow.keras.datasets import mnist # define learning rates to test learning_rates = [0.001, 0.005, 0.01] # load MNIST dataset (x_train, y_train), (x_test, y_test) = mnist.load_data() # normalize input data x_train, x_test = x_train / 255.0, x_test / 255.0 # define model architecture model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10) ]) # define loss function and optimizer loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) optimizer = tf.keras.optimizers.Adam() # train model for each learning rate for lr in learning_rates: # set optimizer learning rate optimizer.lr = lr # compile model model.compile(optimizer=optimizer, loss=loss_fn, metrics=['accuracy']) # train model and record loss and accuracy history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test)) train_loss_values = history.history['loss'] test_loss_values = history.history['val_loss'] train_acc_values = history.history['accuracy'] test_acc_values = history.history['val_accuracy'] # plot loss and accuracy curves plt.figure() plt.plot(train_loss_values, label='train') plt.plot(test_loss_values, label='test') plt.title('Learning Rate = ' + str(lr)) plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.figure() plt.plot(train_acc_values, label='train') plt.plot(test_acc_values, label='test') plt.title('Learning Rate = ' + str(lr)) plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend() # print final test accuracy print('Test Accuracy (Learning Rate = ' + str(lr) + '): ' + str(test_acc_values[-1])) ``` 3. 运行代码,在每个学习率的情况下,观察损失函数迭代曲线和测试集上的准确度。根据结果选择较优的学习率值。 希望这些指导可以帮助您实现所需的优化。如果您需要更进一步的帮助,请在具体问题中详细描述您的需求。

相关推荐

随机森林导入数据用kfold分层抽样后用下列画roc_curve曲线三分类python代码mse = mean_squared_error(y_test, y_pred1) rmse = math.sqrt(mse) print('FNN深度森林RMSE:', rmse) print('FNN深度森林Accuracy:', accuracy_score(y_test, y_pred1)) mse = mean_squared_error(y_test_fuzzy, y_pred) rmse = math.sqrt(mse) print('深度森林RMSE:', rmse) print('深度森林Accuracy:', accuracy_score(y_test_fuzzy, y_pred)) fpr = dict() tpr = dict() roc_auc = dict() for i in range(3): # 遍历三个类别 fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_pred1[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area(方法二) fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_pred1.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) # Compute macro-average ROC curve and ROC area(方法一) # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(3)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(3): mean_tpr += interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= 3 fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) # Plot all ROC curves lw = 2 plt.figure() plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"]), color='deeppink', linestyle=':', linewidth=4) plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["macro"]), color='navy', linestyle=':', linewidth=4) colors = cycle(['aqua', 'darkorange', 'cornflowerblue']) for i, color in zip(range(3), colors): plt.plot(fpr[i], tpr[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('DF-F') plt.legend(loc="lower right")

import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix,classification_report import seaborn as sns import matplotlib.pyplot as plt # 读取数据 data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测样本.xlsx') # 分割训练集和验证集 train_data = data.sample(frac=0.8, random_state=1) test_data = data.drop(train_data.index) # 定义特征变量和目标变量 features = ['高程', '起伏度', '桥梁长', '道路长', '平均坡度', '平均地温', 'T小于0', '相态'] target = '交通风险' # 训练随机森林模型 rf = RandomForestClassifier(n_estimators=100, random_state=1) rf.fit(train_data[features], train_data[target]) # 在验证集上进行预测并计算精度、召回率和F1值等指标 pred = rf.predict(test_data[features]) accuracy = accuracy_score(test_data[target], pred) confusion_mat = confusion_matrix(test_data[target], pred) classification_rep = classification_report(test_data[target], pred) print('Accuracy:', accuracy) print('Confusion matrix:') print(confusion_mat) print('Classification report:') print(classification_rep) # 输出混淆矩阵图片 sns.heatmap(confusion_mat, annot=True, cmap="Blues") plt.show() # 读取新数据文件并预测结果 new_data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096.xlsx') new_pred = rf.predict(new_data[features]) new_data['交通风险预测结果'] = new_pred new_data.to_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096结果.xlsx', index=False)修改代码使得显示决策树模型以及多分类的roc曲线和auc值

最新推荐

recommend-type

国内移动端APP月活跃(MAU)Top5000 数据整理

国内移动端APP月活跃(MAU)Top5000 时间范围:2020年-2022年 具有一定参考价值 csv格式
recommend-type

和平巨魔跨进成免费.ipa

和平巨魔跨进成免费.ipa
recommend-type

数据库管理工具:dbeaver-ce-23.0.4-macos-aarch64.dmg

1.DBeaver是一款通用数据库工具,专为开发人员和数据库管理员设计。 2.DBeaver支持多种数据库系统,包括但不限于MySQL、PostgreSQL、Oracle、DB2、MSSQL、Sybase、Mimer、HSQLDB、Derby、SQLite等,几乎涵盖了市场上所有的主流数据库。 3.支持的操作系统:包括Windows(2000/XP/2003/Vista/7/10/11)、Linux、Mac OS、Solaris、AIX、HPUX等。 4.主要特性: 数据库管理:支持数据库元数据浏览、元数据编辑(包括表、列、键、索引等)、SQL语句和脚本的执行、数据导入导出等。 用户界面:提供图形界面来查看数据库结构、执行SQL查询和脚本、浏览和导出数据,以及处理BLOB/CLOB数据等。用户界面设计简洁明了,易于使用。 高级功能:除了基本的数据库管理功能外,DBeaver还提供了一些高级功能,如数据库版本控制(可与Git、SVN等版本控制系统集成)、数据分析和可视化工具(如图表、统计信息和数据报告)、SQL代码自动补全等。
recommend-type

【课件】8.4.1简单选择排序.pdf

【课件】8.4.1简单选择排序
recommend-type

写的一个静态网站随便写的

写的一个静态网站随便写的写的一个静态网站随便写的写的一个静态网站随便写的写的一个静态网站随便写的写的一个静态网站随便写的写的一个静态网站随便写的写的一个静态网站随便写的
recommend-type

藏经阁-应用多活技术白皮书-40.pdf

本资源是一份关于“应用多活技术”的专业白皮书,深入探讨了在云计算环境下,企业如何应对灾难恢复和容灾需求。它首先阐述了在数字化转型过程中,容灾已成为企业上云和使用云服务的基本要求,以保障业务连续性和数据安全性。随着云计算的普及,灾备容灾虽然曾经是关键策略,但其主要依赖于数据级别的备份和恢复,存在数据延迟恢复、高成本以及扩展性受限等问题。 应用多活(Application High Availability,简称AH)作为一种以应用为中心的云原生容灾架构,被提出以克服传统灾备的局限。它强调的是业务逻辑层面的冗余和一致性,能在面对各种故障时提供快速切换,确保服务不间断。白皮书中详细介绍了应用多活的概念,包括其优势,如提高业务连续性、降低风险、减少停机时间等。 阿里巴巴作为全球领先的科技公司,分享了其在应用多活技术上的实践历程,从早期集团阶段到云化阶段的演进,展示了企业在实际操作中的策略和经验。白皮书还涵盖了不同场景下的应用多活架构,如同城、异地以及混合云环境,深入剖析了相关的技术实现、设计标准和解决方案。 技术分析部分,详细解析了应用多活所涉及的技术课题,如解决的技术问题、当前的研究状况,以及如何设计满足高可用性的系统。此外,从应用层的接入网关、微服务组件和消息组件,到数据层和云平台层面的技术原理,都进行了详尽的阐述。 管理策略方面,讨论了应用多活的投入产出比,如何平衡成本和收益,以及如何通过能力保鲜保持系统的高效运行。实践案例部分列举了不同行业的成功应用案例,以便读者了解实际应用场景的效果。 最后,白皮书展望了未来趋势,如混合云多活的重要性、应用多活作为云原生容灾新标准的地位、分布式云和AIOps对多活的推动,以及在多云多核心架构中的应用。附录则提供了必要的名词术语解释,帮助读者更好地理解全文内容。 这份白皮书为企业提供了全面而深入的应用多活技术指南,对于任何寻求在云计算时代提升业务韧性的组织来说,都是宝贵的参考资源。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵方程求解与机器学习:在机器学习算法中的应用

![matlab求解矩阵方程](https://img-blog.csdnimg.cn/041ee8c2bfa4457c985aa94731668d73.png) # 1. MATLAB矩阵方程求解基础** MATLAB中矩阵方程求解是解决线性方程组和矩阵方程的关键技术。本文将介绍MATLAB矩阵方程求解的基础知识,包括矩阵方程的定义、求解方法和MATLAB中常用的求解函数。 矩阵方程一般形式为Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。求解矩阵方程的过程就是求解x的值。MATLAB提供了多种求解矩阵方程的函数,如solve、inv和lu等。这些函数基于不同的算法,如LU分解
recommend-type

触发el-menu-item事件获取的event对象

触发`el-menu-item`事件时,会自动传入一个`event`对象作为参数,你可以通过该对象获取触发事件的具体信息,例如触发的元素、鼠标位置、键盘按键等。具体可以通过以下方式获取该对象的属性: 1. `event.target`:获取触发事件的目标元素,即`el-menu-item`元素本身。 2. `event.currentTarget`:获取绑定事件的元素,即包含`el-menu-item`元素的`el-menu`组件。 3. `event.key`:获取触发事件时按下的键盘按键。 4. `event.clientX`和`event.clientY`:获取触发事件时鼠标的横纵坐标
recommend-type

藏经阁-阿里云计算巢加速器:让优秀的软件生于云、长于云-90.pdf

阿里云计算巢加速器是阿里云在2022年8月飞天技术峰会上推出的一项重要举措,旨在支持和服务于企业服务领域的创新企业。通过这个平台,阿里云致力于构建一个开放的生态系统,帮助软件企业实现从云端诞生并持续成长,增强其竞争力。该加速器的核心价值在于提供1对1的技术专家支持,确保ISV(独立软件供应商)合作伙伴能获得与阿里云产品同等的技术能力,从而保障用户体验的一致性。此外,入选的ISV还将享有快速在钉钉和云市场上线的绿色通道,以及与行业客户和投资机构的对接机会,以加速业务发展。 活动期间,包括百奥利盟、极智嘉、EMQ、KodeRover、MemVerge等30家企业成为首批计算巢加速器成员,与阿里云、钉钉以及投资界专家共同探讨了技术进步、产品融合、战略规划和资本市场的关键议题。通过这次合作,企业可以借助阿里云的丰富资源和深厚技术实力,应对数字化转型中的挑战,比如精准医疗中的数据处理加速、物流智慧化的升级、数字孪生的普及和云原生图数据库的构建。 阿里云计算巢加速器不仅是一个技术支持平台,也是企业成长的催化剂。它通过举办类似2023年2月的集结活动,展示了如何通过云计算生态的力量,帮助企业在激烈的竞争中找到自己的定位,实现可持续发展。参与其中的优秀企业如神策和ONES等,都在这个平台上得到了加速和赋能,共同推动了企业服务领域的创新与进步。总结来说,阿里云计算巢加速器是一个集技术、资源和生态支持于一体的全方位服务平台,旨在帮助企业软件产业在云端绽放光彩。