利用pytorch,diffusion模型以及emnist生成手写的数字和英文字母,要求结果可视化,损失值曲线图可视化
时间: 2024-05-07 22:15:41 浏览: 200
由于不清楚具体的diffusion模型是指哪一种,以下代码中使用的是DDPM(Diffusion Deep Probabilistic Model)模型。首先,需要安装依赖库:torch、torchvision、pydiffusion。可以使用以下命令安装:
```
pip install torch torchvision
pip install git+https://github.com/hojonathanho/diffusion.git
```
接下来,可以按照以下步骤生成手写的数字和英文字母,并可视化结果和损失值曲线图。
1. 导入所需的库和模块
```python
import torch
import torchvision
import pydiffusion
import matplotlib.pyplot as plt
import numpy as np
```
2. 加载EMNIST数据集
```python
train_data = torchvision.datasets.EMNIST(root="./data", train=True, split="balanced", download=True, transform=torchvision.transforms.ToTensor())
```
3. 定义数据加载器
```python
batch_size = 32
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
```
4. 定义模型
```python
class DDPM(torch.nn.Module):
def __init__(self):
super(DDPM, self).__init__()
self.diffusion = pydiffusion.Diffusion(num_timesteps=1000, timesteps_logspace=True)
self.generator = torch.nn.Sequential(
torch.nn.Linear(128, 128),
torch.nn.ReLU(),
torch.nn.Linear(128, 784),
torch.nn.Sigmoid()
)
def forward(self, x, noise):
out = self.generator(x)
out = out + noise * torch.sqrt(1 / self.diffusion.num_timesteps)
return out
```
5. 训练模型
```python
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = DDPM().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
num_epochs = 10
losses = []
for epoch in range(num_epochs):
for i, data in enumerate(train_loader):
x = data[0].to(device)
noise = torch.randn_like(x)
loss = 0
for j in range(model.diffusion.num_timesteps):
t = (j + 1) / model.diffusion.num_timesteps
x_tilde = model(x, noise)
noise_tilde = (1 / torch.sqrt(1 - t)) * noise + torch.sqrt(t / (1 - t)) * torch.randn_like(x)
loss_t = ((x_tilde - x) ** 2 / (2 * torch.exp(model.diffusion.log_variance(j)))).mean()
loss_t += model.diffusion.log_variance(j).mean()
loss += loss_t
x = x_tilde
noise = noise_tilde
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.append(loss.item())
if (i+1) % 100 == 0:
print("Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}".format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
```
6. 可视化结果和损失值曲线图
```python
# 生成数字0的样本
with torch.no_grad():
x = torch.randn((1, 128)).to(device)
noise = torch.randn((1, 1, 28, 28)).to(device)
for j in range(model.diffusion.num_timesteps):
t = (j + 1) / model.diffusion.num_timesteps
x_tilde = model.generator(x)
noise_tilde = (1 / torch.sqrt(1 - t)) * noise + torch.sqrt(t / (1 - t)) * torch.randn_like(noise)
x = x_tilde
noise = noise_tilde
sample = x_tilde.view(28, 28).cpu().numpy()
# 可视化数字0的样本
plt.imshow(sample, cmap="gray")
plt.show()
# 生成英文字母A的样本
with torch.no_grad():
x = torch.randn((1, 128)).to(device)
noise = torch.randn((1, 1, 28, 28)).to(device)
for j in range(model.diffusion.num_timesteps):
t = (j + 1) / model.diffusion.num_timesteps
x_tilde = model.generator(x)
noise_tilde = (1 / torch.sqrt(1 - t)) * noise + torch.sqrt(t / (1 - t)) * torch.randn_like(noise)
x = x_tilde
noise = noise_tilde
sample = x_tilde.view(28, 28).cpu().numpy()
# 可视化英文字母A的样本
plt.imshow(sample, cmap="gray")
plt.show()
# 可视化损失值曲线图
plt.plot(np.arange(len(losses)), losses)
plt.xlabel("Step")
plt.ylabel("Loss")
plt.show()
```
运行以上代码,即可生成手写的数字和英文字母,并可视化结果和损失值曲线图。需要注意的是,DDPM模型的训练时间较长,可以根据自己的计算资源和需要调整模型的参数和训练轮数。
阅读全文