union Uint16_BIT_STRUCT { Uint16 all; struct { Uint16 bit1:1; Uint16 bit2:1; Uint16 bit3:1; Uint16 bit4:1; Uint16 bit5:1; Uint16 bit6:1; Uint16 bit7:1; Uint16 bit8:1; Uint16 bit9:1; Uint16 bit10:1; Uint16 bit11:1; Uint16 bit12:1; Uint16 bit13:1; Uint16 bit14:1; Uint16 bit15:1; Uint16 bit16:1; }; struct { Uint16 bit1_3: 3; // Uint16 bit4_16: 13;// }; struct { Uint16 bit1_5: 5; Uint16 bit6_8: 3;// Uint16 bit_9: 1; 可以优化吗Uint16 bit10_11: 2; Uint16 bit12_13: 2; Uint16 bit14_16: 3; }; }; union Uint16_BIT_STRUCT addr_0x9730; union Uint16_BIT_STRUCT addr_0x978d; union Uint16_BIT_STRUCT addr_0x97dc; int16 addr_0x9914; union Uint16_BIT_STRUCT addr_0x9915; int16 addr_0x991f; union Uint16_BIT_STRUCT addr_0x9a42; int16 addr_0x9a6d; extern union Uint16_BIT_STRUCT addr_0x9a91; union Uint16_BIT_STRUCT addr_0x9a95; int16 addr_0x9ab0; int16 addr_0x9ab1; int16 addr_0x9ab2; int16 addr_0x9ab3; void sub_3EC74F(void) { if( addr_0x9a91.bit8 == 0 ){ addr_0x97dc.bit12 = 1; if( addr_0x9a91.bit5 == 1 ){ if( ++addr_0x9ab1 > 1800 ){ addr_0x9a95.bit14 = 1;} if( addr_0x9ab1 >= 2000 ){ addr_0x9ab1 = 2000; addr_0x97dc.bit12 = 0; addr_0x9a91.bit8 = 1;} } if( addr_0x9a91.bit4 == 1 ){ addr_0x991f = 147; addr_0x9914 = 10 * addr_0x9730.bit1_5 + 100 ; addr_0x9915.all = addr_0x9730.bit6_8; if( addr_0x9730.bit6_8 != 0b001 ){ if( ++addr_0x9ab2 >= 100 ){ addr_0x9ab2=100; addr_0x978d.bit4 = 1; } }else{ if( --addr_0x9ab2 <= 0 ){ addr_0x9ab2=0; addr_0x978d.bit4 = 0; } } if( addr_0x9a6d != 21845 ){ addr_0x978d.bit3 = 1; }else{ addr_0x978d.bit3 = 0; } } } if(addr_0x9a91.bit8 == 1 && addr_0x978d.bit3 == 0 && addr_0x978d.bit4 == 0 && addr_0x978d.bit5 == 0){ addr_0x9a91.bit13 = 1; }else{ addr_0x9a91.bit13 = 0; } if( addr_0x9a42.bit1 == 1 ){ addr_0x9ab3=0; addr_0x9a91.bit12 = 0; if(addr_0x9a91.bit5 == 1 && addr_0x9ab0 > 200){ addr_0x9ab0 = 200; addr_0x9a91.bit10 = 1; } }else{ addr_0x9ab0 = 0; addr_0x9a91.bit10 = 0; if( addr_0x9a91.bit7 == 1 ){ if( ++addr_0x9ab3 > 1000 ){ addr_0x9ab3=1000; addr_0x9a91.bit12 = 1; } } } }
时间: 2024-04-03 18:32:37 浏览: 123
这段代码中的联合体定义可以进行优化,例如可以将 `bit1_3` 和 `bit4_16` 合并为一个字段,将 `bit1_5`、`bit6_8`、`bit9`、`bit10_11`、`bit12_13` 和 `bit14_16` 合并为另一个字段。这样可以减少内存空间的使用,同时也可以简化代码。
此外,这段代码中可能存在一些潜在的问题,例如没有对变量进行初始化,有些变量可能会出现未定义的值,需要进行处理。此外,函数中存在一些奇怪的逻辑,需要对代码进行分析和理解。
相关问题
struct STRUCT_BITS { Uint16 bit1:1; Uint16 bit2:1; Uint16 bit3:1; Uint16 bit4:1; Uint16 bit5:1; Uint16 bit6:1; Uint16 bit7:1; Uint16 bit8:1; Uint16 bit9:1; Uint16 bit10:1; Uint16 bit11:1; Uint16 bit12:1; Uint16 bit13:1; Uint16 bit14:1; Uint16 bit15:1; Uint16 bit16:1; }; union Uint16_BIT_STRUCT { Uint16 all; struct STRUCT_BITS bit; };如何生成结构体嵌套表示a.bit1-3
要访问a的bit1-3,可以使用结构体嵌套的方式:
```
union Uint16_BIT_STRUCT a;
a.all = 0x1234; // 假设a.all的值为0x1234
// 访问a的bit1-3
uint16_t bits_1_3 = (uint16_t)(a.bit.bit1 | a.bit.bit2 << 1 | a.bit.bit3 << 2);
```
在这个例子中,我们首先定义了一个包含16个位域的结构体,然后使用联合体将其包装成一个16位无符号整数。访问结构体的位域时,可以使用`.`运算符,例如`a.bit.bit1`表示访问a的第一个位域。要访问多个位域,需要将它们移位并进行按位或运算,如上面的代码所示。
typedef union { struct { uint32_t timeout_ie :1; uint32_t rx_ack_ie :1; uint32_t rx_byte_ie :1; uint32_t sto_det_ie :1; uint32_t resta_det_ie :1; uint32_t reserved0 :3; uint32_t en_i2c :1; uint32_t i2c_io_en :1; uint32_t slv_mode :1; uint32_t slv_stretch :1; uint32_t prescale :8; uint32_t i2c_pin_sel :1; // 0:CLK->GPIO5, SDA->GPIO6; 1:CLK->GPIO4, SDA->GPIO2 uint32_t reserved1 :11; } b; uint32_t data32; } I2C_CFG_Struct; typedef union { struct { uint32_t halt :1; uint32_t rst_i2c :1; uint32_t sto :1; uint32_t sta :1; uint32_t re_sta :1; uint32_t tx_ack :1; uint32_t mst_rw :1; uint32_t reserved0 :25; } b; uint32_t data32; } I2C_CTL_Struct; typedef union { struct { uint32_t timeout :1; uint32_t rx_ack_if :1; uint32_t rx_byte_if :1; uint32_t sto_det_if :1; uint32_t resta_det_if :1; uint32_t slv_wr :1; uint32_t addr_match :1; uint32_t rx_ack :1; uint32_t busy :1; uint32_t reserved0 :15; uint32_t current_state :4; uint32_t reserved1 :4; } b; uint32_t data32; } I2C_CST_Struct; typedef union { struct c{ uint32_t addr :7; uint32_t reserved0 :25; } b; uint32_t data32; } I2C_ADDR_Struct; typedef union { struct { uint32_t data :8; uint32_t reserved0 :24; } b; uint32_t data32; } I2C_DATA_Struct; typedef enum { I2C_MST, I2C_SLV } I2C_ROLE;
这段代码定义了一些联合体和结构体,用于对I2C配置寄存器、控制寄存器、状态寄存器、地址寄存器和数据寄存器进行位字段的操作。
- `I2C_CFG_Struct` 是一个联合体,其中包含了一个结构体,该结构体定义了配置寄存器的各个位字段。
- `I2C_CTL_Struct` 是一个联合体,其中包含了一个结构体,该结构体定义了控制寄存器的各个位字段。
- `I2C_CST_Struct` 是一个联合体,其中包含了一个结构体,该结构体定义了状态寄存器的各个位字段。
- `I2C_ADDR_Struct` 是一个联合体,其中包含了一个结构体,该结构体定义了地址寄存器的各个位字段。
- `I2C_DATA_Struct` 是一个联合体,其中包含了一个结构体,该结构体定义了数据寄存器的各个位字段。
此外,还定义了一个枚举类型 `I2C_ROLE`,用于指定I2C的角色,可以是主设备(`I2C_MST`)或从设备(`I2C_SLV`)。
阅读全文
相关推荐












