def predict(self, X: np.ndarray)->np.ndarray: ''' Predict label probability for the input X Parameters: X is the data input. X is one dimensional or two dimensional numpy array. Return: predicted label probability, which is a one dimensional numpy array. ''' X = self.add_feature(X) # (n, m) -> (n, m+1) #### write your code below #### return #### write your code above ####。请帮我完成需要填写的代码
时间: 2024-02-10 19:17:16 浏览: 115
biker-predict-master.zip_Random Forest_log7ry_metalk6x_predict_随
好的,根据您提供的代码,以下是需要填写的代码:
```python
# compute predicted label probability
prob = self.sigmoid(X)
return prob
```
以上代码会先调用 `add_feature` 方法为输入数据添加全为1的一列,然后将处理后的数据作为自变量,带入 `sigmoid` 函数中,得到模型预测的标签概率。
希望对您有帮助!
阅读全文