def get_data(): (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, flatten=True, one_hot_label=False) return x_train,t_train,x_test, t_test def init_network(): with open("sample_weight.pkl", 'rb') as f: network = pickle.load(f) return network x_train,t_train,x_test, t_test = get_data() network=init_network() print("x_train:",x_train) print("t_train:",t_train) print("x_test:",x_test) print("t_test:",t_test) for k,v in network.items(): print(k) print(v.shape)分析以上代码
时间: 2023-12-24 18:08:52 浏览: 173
以上代码主要实现了读取MNIST数据集和神经网络的初始化。具体来说,代码中定义了两个函数:`get_data()`和`init_network()`。
`get_data()`函数通过`load_mnist()`方法加载MNIST数据集,并将训练数据`x_train`和`t_train`以及测试数据`x_test`和`t_test`返回。其中,`normalize=True`表示对数据进行归一化处理,`flatten=True`表示将图像展开为一维数组,`one_hot_label=False`表示不使用one-hot编码。
`init_network()`函数通过`pickle`模块加载了预训练好的神经网络参数,并将其返回。
在主函数中,首先调用`get_data()`和`init_network()`函数获取数据和神经网络参数,并打印出来。然后,通过`for`循环遍历神经网络参数`network`,将每个参数的名称和形状打印出来。
总的来说,以上代码主要是用来加载MNIST数据集和预训练好的神经网络参数,为后续的模型训练和推理做准备。
相关问题
import gzip import os import pickle import numpy as np def load_mnist(path, kind='train'): labels_path = os.path.join(path, '%s-labels.idx1-ubyte' % kind) images_path = os.path.join(path, '%s-images.idx3-ubyte' % kind) with gzip.open(labels_path, 'rb') as lbpath: labels = np.frombuffer(lbpath.read(), dtype=np.uint8, offset=8) with gzip.open(images_path, 'rb') as imgpath: images = np.frombuffer(imgpath.read(), dtype=np.uint8, offset=16).reshape(len(labels), 784) return images, labels def get_mnist_data(num_training=5000, num_validation=500, num_test=500): mnist_dir = r'D:\daima\mnist' # 修改为mnist数据集所在的目录 X_train, y_train = load_mnist(mnist_dir, kind='train') X_test, y_test = load_mnist(mnist_dir, kind='t10k') print(X_train.shape) mask = range(num_training, num_training + num_validation) X_val = X_train[mask] y_val = y_train[mask] mask = range(num_training) X_train = X_train[mask] y_train = y_train[mask] mask = range(num_test) X_test = X_test[mask] y_test = y_test[mask] X_train = X_train.astype('float32') / 255 X_val = X_val.astype('float32') / 255 X_test = X_test.astype('float32') / 255 return { 'X_train': X_train, 'y_train': y_train, 'X_val': X_val, 'y_val': y_val, 'X_test': X_test, 'y_test': y_test, }读取的mnist文件是什么格式,外部是文件夹内部是压缩包吗
MNIST数据集是一种常用的手写数字识别数据集,它包含了60000张训练图像和10000张测试图像,每张图像都是28x28像素,并且标注了对应的数字。MNIST数据集的文件格式是idx格式,包含四个文件:
- train-images-idx3-ubyte:训练集图像
- train-labels-idx1-ubyte:训练集标签
- t10k-images-idx3-ubyte:测试集图像
- t10k-labels-idx1-ubyte:测试集标签
这些文件都是二进制文件,需要使用专门的程序进行解析,其中的训练集图像和测试集图像文件都是经过gzip压缩的,需要使用gzip库进行解压缩。因此,在读取MNIST数据集时,需要使用gzip库来解压缩训练集图像和测试集图像文件。
def get_CIFAR10_data(num_training=5000, num_validation=500, num_test=500): cifar10_dir = r'D:\daima\cifar-10-python\cifar-10-batches-py' X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) print(X_train.shape) mask = range(num_training, num_training + num_validation) X_val = X_train[mask] y_val = y_train[mask] mask = range(num_training) X_train = X_train[mask] y_train = y_train[mask] mask = range(num_test) X_test = X_test[mask] y_test = y_test[mask] mean_image = np.mean(X_train, axis=0) X_train -= mean_image X_val -= mean_image X_test -= mean_image X_train = X_train.transpose(0, 3, 1, 2).copy() X_val = X_val.transpose(0, 3, 1, 2).copy() X_test = X_test.transpose(0, 3, 1, 2).copy() return { 'X_train': X_train, 'y_train': y_train, 'X_val': X_val, 'y_val': y_val, 'X_test': X_test, 'y_test': y_test, }这是一个加载cifar10数据集的函数,如何修改使其能加载mnist数据集
要加载MNIST数据集,可以使用以下代码修改上述函数:
```
import tensorflow as tf
from tensorflow.keras.datasets import mnist
import numpy as np
def get_MNIST_data(num_training=50000, num_validation=10000, num_test=10000):
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = np.expand_dims(X_train, axis=-1)
X_test = np.expand_dims(X_test, axis=-1)
X_train = X_train.astype('float32') / 255
X_test = X_test.astype('float32') / 255
mean_image = np.mean(X_train, axis=0)
X_train -= mean_image
X_test -= mean_image
mask = range(num_training, num_training + num_validation)
X_val = X_train[mask]
y_val = y_train[mask]
mask = range(num_training)
X_train = X_train[mask]
y_train = y_train[mask]
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]
return {
'X_train': X_train, 'y_train': y_train,
'X_val': X_val, 'y_val': y_val,
'X_test': X_test, 'y_test': y_test,
}
```
此代码使用 TensorFlow 的 MNIST 数据集加载函数,将数据集的维度转换为 (num_samples, height, width, depth) 的形式,并对图像像素值进行归一化。
阅读全文
相关推荐
















