{'机身材质': '铝合金', 'CPU核心数': '4', '内存类型': 'DDR4', '内存频率': 'DDR4 2400MHz', '硬盘类型': 'SSD固态硬盘', '显卡类型': '独立显卡', '显存容量': '2GB', '显存类型': 'GDDR5', '屏幕尺寸-笔记本': '14英寸 FHD超清 IPS防眩光屏 250Ni', '屏幕类型-笔记本': 'FHD超清 IPS防眩光屏', '物理分辨率': '1920x1080', '显示比例': '16:9', '无线网卡': 'WLAN_2X2AC+BT', '蓝牙': '蓝牙4.0', '指纹识别': '开机指纹二合一', '键盘描述': '背光键盘', '其他接口': 'TYPE-C 3.0/USB 3.1*2/HDMI 1.4b/耳机插口', '读卡器': '有', '音箱': '有', '摄像头': '720p', '笔记本电池容量': '4芯45Whr', '服务标准': '2年上门保修+时刻响应服务', '预装软件': 'Office2019', '操作系统': 'Win10家庭简体中文版', 'CPU型号-笔记本': 'I5-8265U', '内存容量': '8GB', '硬盘容量': '512GB', '显卡芯片-笔记本': 'AMD R540X GDDR5 2G独立显卡', '外观颜色': '银河灰'} 怎么在jupyter中把其中的CPU型号提取出来
时间: 2023-08-20 14:50:41 浏览: 186
你可以使用 Python 中的字典索引方法来提取 "CPU型号-笔记本" 字段的值。在 Jupyter 中,你可以执行以下步骤:
1. 将给定的字典赋值给一个变量,例如 `specs`:
```python
specs = {'机身材质': '铝合金', 'CPU核心数': '4', '内存类型': 'DDR4', '内存频率': 'DDR4 2400MHz', '硬盘类型': 'SSD固态硬盘', '显卡类型': '独立显卡', '显存容量': '2GB', '显存类型': 'GDDR5', '屏幕尺寸-笔记本': '14英寸 FHD超清 IPS防眩光屏 250Ni', '屏幕类型-笔记本': 'FHD超清 IPS防眩光屏', '物理分辨率': '1920x1080', '显示比例': '16:9', '无线网卡': 'WLAN_2X2AC+BT', '蓝牙': '蓝牙4.0', '指纹识别': '开机指纹二合一', '键盘描述': '背光键盘', '其他接口': 'TYPE-C 3.0/USB 3.1*2/HDMI 1.4b/耳机插口', '读卡器': '有', '音箱': '有', '摄像头': '720p', '笔记本电池容量': '4芯45Whr', '服务标准': '2年上门保修+时刻响应服务', '预装软件': 'Office2019', '操作系统': 'Win10家庭简体中文版', 'CPU型号-笔记本': 'I5-8265U', '内存容量': '8GB', '硬盘容量': '512GB', '显卡芯片-笔记本': 'AMD R540X GDDR5 2G独立显卡', '外观颜色': '银河灰'}
```
2. 使用索引方法提取 "CPU型号-笔记本" 字段的值,并将其赋值给一个新变量,例如 `cpu_model`:
```python
cpu_model = specs['CPU型号-笔记本']
```
现在,`cpu_model` 将包含 "CPU型号-笔记本" 字段的值 "I5-8265U"。
请确保在 Jupyter 中按顺序执行这些步骤,并将字典中的键名正确拼写。
阅读全文
相关推荐


















