计算sqrt(1/(1+power(cos(x),2)))在0到2*pi的积分
时间: 2024-05-23 19:14:06 浏览: 87
这是一个比较复杂的积分,需要进行一些变换才能求解。我们可以通过代换来简化被积函数,令$t=\tan(x/2)$,则有:
$\begin{aligned} \sqrt{\frac{1}{1+\cos^2(x)}} &= \frac{1}{|\sin(x)|}\sqrt{\frac{\sin^2(x)}{\sin^2(x)+\cos^2(x)}} \\ &= \frac{1}{|\sin(x)|}\sqrt{\frac{\sin^2(x)}{1+\tan^2(x)}} \\ &= \frac{1}{|\sin(x)|}\sqrt{\frac{1}{\frac{1}{\sin^2(x)}+1}} \\ &= \frac{1}{|\sin(x)|\cos(x/2)} \\ &= \frac{2}{\sin(x)}\sqrt{\frac{t^2+1}{1+t^2}} \end{aligned}$
接下来,我们将积分变为$t$的积分,有:
$\begin{aligned} \int_0^{2\pi} \sqrt{\frac{1}{1+\cos^2(x)}} dx &= \int_0^{2\pi} \frac{2}{\sin(x)}\sqrt{\frac{t^2+1}{1+t^2}} dx \\ &= \int_0^{\infty} \frac{2}{1+t^2}\sqrt{\frac{t^2+1}{1+t^2}} dt \end{aligned}$
现在,我们通过换元$t=\tan\theta$来求解该积分,有:
$\begin{aligned} \int_0^{\infty} \frac{2}{1+t^2}\sqrt{\frac{t^2+1}{1+t^2}} dt &= \int_0^{\pi/2} 2\sqrt{\frac{\sin^2\theta +\cos^2\theta}{\cos^2\theta}} d\theta \\ &= \int_0^{\pi/2} 2\sin\theta d\theta \\ &= 2 \end{aligned}$
因此,原积分的结果为2。
阅读全文