plt.figure() plt.plot(range(len(y_pred)),y_pred,'b',label='predict') plt.plot(range(len(y_pred)),y_test,'r',label='test') plt.legend(loc='upper right')

时间: 2023-09-09 13:12:46 浏览: 113
ZIP

GPR.zip_Gpr python_高斯过程_高斯过程回归

star5星 · 资源好评率100%
这是一个 Python 代码段,用于绘制回归模型的预测结果和真实值之间的对比图。具体而言,它使用了 matplotlib 库中的 plot 函数,分别绘制了预测值和真实值的变化趋势,并用不同的颜色进行区分。其中,range(len(y_pred)) 生成了一个等差数列,长度为 y_pred 的长度,用来表示 x 轴的刻度值。 该代码还使用了 legend 函数,在图像的右上角添加了一个图例,用来标识预测值和真实值的线条颜色和含义。具体而言,'b' 和 'r' 分别表示蓝色和红色,'predict' 和 'test' 分别表示预测值和真实值。 通过绘制预测值和真实值之间的对比图,可以直观地了解模型的预测效果,并对模型的表现进行评估和比较。
阅读全文

相关推荐

depth = np.arange(1, 15) err_train_list = [] err_test_list = [] clf = DecisionTreeClassifier(criterion='entropy') for d in depth: clf.set_params(max_depth=d) clf.fit(x_train, y_train) y_train_pred = clf.predict(x_train) err_train = 1-accuracy_score(y_train, y_train_pred) err_train_list.append(err_train) y_test_pred = clf.predict(x_test) err_test = 1-accuracy_score(y_test, y_test_pred) err_test_list.append(err_test) print(d, '测试集错误率:%.2f%%' % (100 * err_test)) plt.figure(facecolor='w') plt.plot(depth, err_test_list, 'ro-', markeredgecolor='k', lw=2, label='测试集错误率') plt.plot(depth, err_train_list, 'go-', markeredgecolor='k', lw=2, label='训练集错误率') plt.xlabel('决策树深度', fontsize=13) plt.ylabel('错误率', fontsize=13) plt.legend(loc='lower left', fontsize=13) plt.title('决策树深度与过拟合', fontsize=15) plt.grid(b=True, ls=':', color='#606060') depth = np.arange(1, 15) err_train_list = [] err_test_list = [] clf = DecisionTreeClassifier(criterion='entropy') for d in depth: clf.set_params(max_depth=d) clf.fit(x_train, y_train) y_train_pred = clf.predict(x_train) err_train = 1-accuracy_score(y_train, y_train_pred) err_train_list.append(err_train) y_test_pred = clf.predict(x_test) err_test = 1-accuracy_score(y_test, y_test_pred) err_test_list.append(err_test) print(d, '测试集错误率:%.2f%%' % (100 * err_test)) plt.figure(facecolor='w') plt.plot(depth, err_test_list, 'ro-', markeredgecolor='k', lw=2, label='测试集错误率') plt.plot(depth, err_train_list, 'go-', markeredgecolor='k', lw=2, label='训练集错误率') plt.xlabel('决策树深度', fontsize=13) plt.ylabel('错误率', fontsize=13) plt.legend(loc='lower left', fontsize=13) plt.title('决策树深度与过拟合', fontsize=15) plt.grid(b=True, ls=':', color='#606060') plt.show()

from sklearn.ensemble import AdaBoostRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import mean_squared_error as MSE from sklearn.metrics import mean_absolute_error as MAE # 从CSV文件中读取数据 data = pd.read_excel('battery.xlsx') # 分离X和y X = data.iloc[:, :-1].values y = data.iloc[:, -1].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 定义基础模型 linear_model = LinearRegression() decision_tree_model = DecisionTreeRegressor(max_depth=5) random_forest_model = RandomForestRegressor(n_estimators=100, max_depth=30, random_state=42) base_model = [linear_model, decision_tree_model, random_forest_model] # 定义AdaBoost回归器 ada_boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(max_depth=5), n_estimators=100, learning_rate=0.1, random_state=42) # 训练模型 ada_boost.fit(X_train, y_train) # 预测并计算均方误差 y_pred = ada_boost.predict(X_test) print("MAE:", MAE(y_pred, y_test)) print("MSE:", MSE(y_pred, y_test)) print("RMSE:", np.sqrt(MSE(y_pred, y_test))) print("训练集R^2:", ada_boost.score(X_train, y_train)) print("测试集R^2:", ada_boost.score(X_test, y_test)) # 评估预测结果 plt.figure() plt.plot(range(len(y_pred)), y_pred, 'b', label = 'predict') plt.plot(range(len(y_pred)), y_test, 'r', label = 'test') plt.legend(loc = 'upper right') plt.ylabel("SOH") plt.show() 请告诉我这个代码是什么意思

import numpy as np import pandas as pd import matplotlib.pyplot as plt df=pd.read_csv('C:\\Users\ASUS\Desktop\AI\实训\汽车销量数据new.csv',sep=',',header=0) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.figure(figsize=(10,4)) ax1=plt.subplot(121) ax1.scatter(df['price'],df['quantity'],c='b') df=(df-df.min())/(df.max()-df.min()) df.to_csv('quantity.txt',sep='\t',index=False) train_data=df.sample(frac=0.8,replace=False) test_data=df.drop(train_data.index) x_train=train_data['price'].values.reshape(-1, 1) y_train=train_data['quantity'].values x_test=test_data['price'].values.reshape(-1, 1) y_test=test_data['quantity'].values from sklearn.linear_model import LinearRegression import joblib #model=SGDRegressor(max_iter=500,learning_rate='constant',eta0=0.01) model = LinearRegression() #训练模型 model.fit(x_train,y_train) #输出训练结果 pre_score=model.score(x_train,y_train) print('训练集准确性得分=',pre_score) print('coef=',model.coef_,'intercept=',model.intercept_) #保存训练后的模型 joblib.dump(model,'LinearRegression.model') ax2=plt.subplot(122) ax2.scatter(x_train,y_train,label='测试集') ax2.plot(x_train,model.predict(x_train),color='blue') ax2.set_xlabel('工龄') ax2.set_ylabel('工资') plt.legend(loc='upper left') model=joblib.load('LinearRegression.model') y_pred=model.predict(x_test)#得到预测值 print('测试集准确性得分=%.5f'%model.score(x_test,y_test)) #计算测试集的损失(用均方差) MSE=np.mean((y_test - y_pred)**2) print('损失MSE={:.5f}'.format(MSE)) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.figure(figsize=(10,4)) ax1=plt.subplot(121) plt.scatter(x_test,y_test,label='测试集') plt.plot(x_test,y_pred,'r',label='预测回归线') ax1.set_xlabel('工龄') ax1.set_ylabel('工资') plt.legend(loc='upper left') ax2=plt.subplot(122) x=range(0,len(y_test)) plt.plot(x,y_test,'g',label='真实值') plt.plot(x,y_pred,'r',label='预测值') ax2.set_xlabel('样本序号') ax2.set_ylabel('工资') plt.legend(loc='upper right') plt.show()怎么预测价格为15万时的销量

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, classification_report, accuracy_score # 1. 数据准备 train_data = pd.read_csv('train.csv') test_data = pd.read_csv('test_noLabel.csv') # 填充缺失值 train_data.fillna(train_data.mean(), inplace=True) test_data.fillna(test_data.mean(), inplace=True) # 2. 特征工程 X_train = train_data.drop(['Label', 'ID'], axis=1) y_train = train_data['Label'] X_test = test_data.drop('ID', axis=1) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 3. 模型建立 model = RandomForestClassifier(n_estimators=100, random_state=42) # 4. 模型训练 model.fit(X_train, y_train) # 5. 进行预测 y_pred = model.predict(X_test) # 6. 保存预测结果 df_result = pd.DataFrame({'ID': test_data['ID'], 'Label': y_pred}) df_result.to_csv('forecast_result.csv', index=False) # 7. 模型评估 y_train_pred = model.predict(X_train) print('训练集准确率:', accuracy_score(y_train, y_train_pred)) print('测试集准确率:', accuracy_score(y_test, y_pred)) print(classification_report(y_test, y_pred)) # 8. 绘制柱形图 feature_importances = pd.Series(model.feature_importances_, index=X_train.columns) feature_importances = feature_importances.sort_values(ascending=False) plt.figure(figsize=(10, 6)) sns.barplot(x=feature_importances, y=feature_importances.index) plt.xlabel('Feature Importance Score') plt.ylabel('Features') plt.title('Visualizing Important Features') plt.show() # 9. 对比类分析 train_data['Label'].value_counts().plot(kind='bar', color=['blue', 'red']) plt.title('Class Distribution') plt.xlabel('Class') plt.ylabel('Frequency') plt.show()

from sklearn.datasets import load_iris from sklearn. model_selection import train_test_split from sklearn.metrics import classification_report from sklearn. neighbors import KNeighborsClassifier from sklearn. metrics import roc_curve, auc import matplotlib.pyplot as plt from sklearn. metrics import confusion_matrix import seaborn as sns import scikitplot as skplt #加载数据集 iris = load_iris() data = iris['data'] label = iris['target'] #数据集的划分 x_train,x_test,y_train,y_test = train_test_split(data,label,test_size=0.3) print(x_train) #模型构建 model = KNeighborsClassifier(n_neighbors=5) model.fit(x_train,y_train) #模型评估 #(1)精确率,召回率,F1分数,准确率(宏平均和微平均) predict = model. predict(x_test) result = classification_report(y_test,predict) print(result) # (2) 混淆矩阵 confusion_matrix = confusion_matrix(y_test, predict) print('混淆矩阵:', confusion_matrix) sns.set(font_scale=1) sns.heatmap(confusion_matrix, annot=True, annot_kws={"size", 16}, cmap=plt.cm.Blues) plt.title('Confusion Matrix') plt.ylabel('True label' ) plt.xlabel('Predicted label') plt.savefig('Confusion matrix. pdf') plt.show() #(3)ROC曲线 Y_pred_prob = model. predict_proba(x_test) plt.figure(figsize= (7,7)) ax= plt. subplot() skplt.metrics.plot_roc_curve(y_test,Y_pred_prob,ax= ax) ax.set_xlabel('False Positive Rate', fontsize = 20) ax.set_ylabel('True Positive Rate ',fontsize = 20) ax.set_title('ROC Areas ',fontsize = 20) plt.xlim((0, 1)) plt.ylim((0, 1)) plt.xticks(fontsize = 18) plt.yticks(fontsize = 18) plt.legend(fontsize =18) plt.savefig(' ROC.pdf') plt.show( ) #(4)P_R曲线 from sklearn.metrics import precision_recall_curve precision, recall, _ =precision_recall_curve(y_test) plt.fill_between(recall, precision,color='b') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.0]) plt.xlim([0.0, 1.0]) plt.plot(recall, precision) plt.title("Precision-Recall") plt.show()

最新推荐

recommend-type

Java基于springboot+vue的校园自助洗衣服务管理系统的设计与实现.rar

【基于Springboot+Vue的设计与实现】高分通过项目,已获导师指导。 本项目是一套基于Springboot+Vue的管理系统,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的Java学习者。也可作为课程设计、期末大作业 包含:项目源码、数据库脚本、开发说明文档、部署视频、代码讲解视频、全套软件等,该项目可以直接作为毕设使用。 项目都经过严格调试,确保可以运行! 环境说明: 开发语言:Java 框架:springboot,mybatis JDK版本:JDK1.8 数据库:mysql 5.7数据库工具:Navicat11开发软件:eclipse/idea Maven包:Maven3.3
recommend-type

广义表的基本操作与高级功能

这份资料详细介绍了广义表(Generalized List)这一重要的数据结构。广义表是一种递归数据结构,其元素可以是原子(基本数据类型,如数字、字符)或者子表(另一个广义表),具有灵活性和递归性的特点。 资料主要包含七个部分:基本概念介绍、表示方法、存储结构、基本操作、高级操作、应用场景和优化策略。在基本操作部分,详细讲解了创建、遍历、插入、删除等功能的具体实现,每个操作都配有完整的C语言代码示例。在应用场景部分,展示了广义表在表示嵌套表达式、树结构和多层嵌套数据等实际场景中的应用。针对实现过程中可能遇到的内存管理、递归效率、栈溢出等问题,资料也提供了相应的优化策略和解决方案。
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战指南】MATLAB自适应遗传算法调整:优化流程全掌握

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法基础与MATLAB环境搭建 遗传算法(Genetic Algorithm, GA)是模拟生物进化过程的搜索启发式算法,它使用类似自然选择和遗传学的原理在潜在解空间中搜索最优解。在MATLAB中实现遗传算法需要先搭建合适的环境,设置工作路径,以及了解如何调用和使用遗传算法相关的函数和工具箱。 ## 1.1 遗传算法简介 遗传算法是一种全局优化算法,它的特点是不依赖于问题的梯度信息,适用于搜索复杂、多峰等难
recommend-type

在Spring AOP中,如何实现一个环绕通知并在方法执行前后插入自定义逻辑?

在Spring AOP中,环绕通知(Around Advice)是一种强大的通知类型,它在方法执行前后提供完全的控制,允许开发者在目标方法执行前后插入自定义逻辑。要实现环绕通知,你需要创建一个实现`org.aopalliance.intercept.MethodInterceptor`接口的类,并重写`invoke`方法。 参考资源链接:[Spring AOP:前置、后置、环绕通知深度解析](https://wenku.csdn.net/doc/1tvftjguwg?spm=1055.2569.3001.10343) 下面是一个环绕通知的实现示例,我们将通过Spring配置启用这个