将Wave数据集进行分箱处理,并在分箱特征上比较线性回归和决策树回归。python
时间: 2024-10-21 08:07:41 浏览: 32
Day4_线性模型python实现
将Wave数据集进行分箱处理通常是为了将连续数值型变量转化为离散的类别,这有助于减少模型的复杂度并提高解释性。在Python中,我们可以使用pandas库来进行数据预处理,比如使用`pd.cut()`函数对数据进行等宽或等频分箱。
例如:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import KBinsDiscretizer
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
# 加载或读取Wave数据集
wave_data = pd.read_csv('wave_dataset.csv') # 假设数据集路径
# 对一列或多列连续变量进行分箱
wave_data['column_to_binarize'] = pd.cut(wave_data['column_to_binarize'], bins=5)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(wave_data.drop('target', axis=1), wave_data['target'], test_size=0.2)
# 分别对线性回归和决策树进行拟合
linear_regression = LinearRegression()
linear_regression.fit(X_train[['column_to_binarize']], y_train)
tree_regressor = DecisionTreeRegressor()
tree_regressor.fit(X_train[['column_to_binarize']], y_train)
# 预测和评估
linear_pred = linear_regression.predict(X_test[['column_to_binarize']])
tree_pred = tree_regressor.predict(X_test[['column_to_binarize']])
# 比较性能
print("Linear Regression R^2 score:", r2_score(y_test, linear_pred))
print("Decision Tree Regressor R^2 score:", r2_score(y_test, tree_pred))
阅读全文