将Wave数据集进行分箱处理,并在分箱特征上比较线性回归和决策树回归。python代码
时间: 2024-10-21 19:07:50 浏览: 39
将Wave数据集进行分箱处理(Binning)通常是为了将连续数值变量转换为离散的类别,以便于非参数模型如线性回归和决策树回归。这里是一个简单的Python示例,使用pandas和sklearn库:
首先,你需要安装必要的库(如果你还没有安装):
```bash
pip install pandas numpy scikit-learn matplotlib
```
然后,以下是分箱处理和模型比较的代码片段:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.preprocessing import KBinsDiscretizer
import matplotlib.pyplot as plt
# 加载Wave数据集 (假设你已经有了一个名为wave_data.csv的CSV文件)
wave_df = pd.read_csv('wave_data.csv')
# 分箱处理
# 假设我们选择4个等宽的区间进行分箱
binning = KBinsDiscretizer(n_bins=4, encode='ordinal')
wave_binned = binning.fit_transform(wave_df['feature_column'])
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(wave_binned, wave_df['target_column'], test_size=0.2, random_state=42)
# 线性回归模型
lr = LinearRegression()
lr.fit(X_train, y_train)
lr_score = lr.score(X_test, y_test)
# 决策树回归模型
dt = DecisionTreeRegressor()
dt.fit(X_train, y_train)
dt_score = dt.score(X_test, y_test)
# 比较得分
print(f"Linear Regression Score: {lr_score}")
print(f"Decision Tree Regression Score: {dt_score}")
# 可视化模型效果差异
plt.figure(figsize=(8,6))
plt.plot(range(1, len(lr.coef_) + 1), lr.coef_, label="Linear Regression Coefficients")
plt.plot(range(1, len(dt.feature_importances_) + 1), dt.feature_importances_, 'o', label="Decision Tree Feature Importance")
plt.xlabel("Feature Index")
plt.ylabel("Importance")
plt.title("Comparison of Model Interpretation")
plt.legend()
plt.show()
阅读全文