pytorch中dense层定义
时间: 2023-10-21 08:17:37 浏览: 1969
在 PyTorch 中,可以使用 `nn.Linear` 来定义一个全连接层,也称为 Dense 层。`nn.Linear` 的构造函数有两个参数,第一个参数是输入特征的数量,第二个参数是输出特征的数量。下面是一个例子:
```python
import torch.nn as nn
# 定义一个输入特征数量为10,输出特征数量为5的全连接层
dense_layer = nn.Linear(10, 5)
```
这个全连接层将输入一个大小为 `(batch_size, 10)` 的张量,输出一个大小为 `(batch_size, 5)` 的张量。可以使用 `dense_layer.weight` 和 `dense_layer.bias` 分别获取该层的权重和偏置。
相关问题
pytorch中dense函数
在PyTorch中,`torch.nn.functional.dense`函数实现了一个简单的全连接层,它可以将输入张量的每个元素与权重矩阵相乘,并将偏置向量相加,得到输出张量。该函数的原型如下:
```
torch.nn.functional.linear(input, weight, bias=None)
```
参数说明:
- `input`:输入张量,形状为 `(batch_size, in_features)`。
- `weight`:权重矩阵,形状为 `(out_features, in_features)`。
- `bias`:偏置向量,形状为 `(out_features)`。如果为 `None`,则不添加偏置项。
例如,以下代码定义了一个包含两个全连接层的简单神经网络:
```python
import torch.nn as nn
import torch.nn.functional as F
class MyNet(nn.Module):
def __init__(self, in_features, hidden_size, out_features):
super(MyNet, self).__init__()
self.fc1 = nn.Linear(in_features, hidden_size)
self.fc2 = nn.Linear(hidden_size, out_features)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
```
在这个网络中,`nn.Linear`层就是一个全连接层,它使用了`torch.nn.functional.linear`函数实现。输入的形状为 `(batch_size, in_features)`,输出的形状为 `(batch_size, out_features)`。其中,`in_features`是输入特征的数量,`hidden_size`是隐藏层的大小,`out_features`是输出特征的数量。
pytorch搭建densenet121
要使用PyTorch搭建Densenet121模型,可以参考以下步骤:
1. 导入必要的库和模块:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
2. 定义DenseBlock内部的Bottleneck层:
```python
class Bottleneck(nn.Module):
def __init__(self, in_channels, growth_rate):
super(Bottleneck, self).__init__()
self.bn1 = nn.BatchNorm2d(in_channels)
self.conv1 = nn.Conv2d(in_channels, 4 * growth_rate, kernel_size=1, bias=False)
self.bn2 = nn.BatchNorm2d(4 * growth_rate)
self.conv2 = nn.Conv2d(4 * growth_rate, growth_rate, kernel_size=3, padding=1, bias=False)
def forward(self, x):
out = self.conv1(F.relu(self.bn1(x)))
out = self.conv2(F.relu(self.bn2(out)))
out = torch.cat([x, out], 1)
return out
```
3. 定义DenseBlock:
```python
class DenseBlock(nn.Module):
def __init__(self, in_channels, growth_rate, num_layers):
super(DenseBlock, self).__init__()
layers = []
for _ in range(num_layers):
layers.append(Bottleneck(in_channels, growth_rate))
in_channels += growth_rate
self.layers = nn.ModuleList(layers)
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
```
4. 定义过渡层:
```python
class Transition(nn.Module):
def __init__(self, in_channels, out_channels):
super(Transition, self).__init__()
self.bn = nn.BatchNorm2d(in_channels)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
def forward(self, x):
out = self.conv(F.relu(self.bn(x)))
out = self.pool(out)
return out
```
5. 定义Densenet模型:
```python
class DenseNet(nn.Module):
def __init__(self, num_blocks, growth_rate=32, num_classes=1000):
super(DenseNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# Densenet层
in_channels = 64
self.dense1 = self._make_dense_block(in_channels, growth_rate, num_blocks[0])
in_channels += growth_rate * num_blocks[0]
self.trans1 = self._make_transition(in_channels, in_channels // 2)
in_channels = in_channels // 2
self.dense2 = self._make_dense_block(in_channels, growth_rate, num_blocks[1])
in_channels += growth_rate * num_blocks[1]
self.trans2 = self._make_transition(in_channels, in_channels // 2)
in_channels = in_channels // 2
self.dense3 = self._make_dense_block(in_channels, growth_rate, num_blocks[2])
in_channels += growth_rate * num_blocks[2]
self.trans3 = self._make_transition(in_channels, in_channels // 2)
in_channels = in_channels // 2
self.dense4 = self._make_dense_block(in_channels, growth_rate, num_blocks[3])
in_channels += growth_rate * num_blocks[3]
self.bn2 = nn.BatchNorm2d(in_channels)
self.fc = nn.Linear(in_channels, num_classes)
def _make_dense_block(self, in_channels, growth_rate, num_layers):
layers = []
for _ in range(num_layers):
layers.append(Bottleneck(in_channels, growth_rate))
in_channels += growth_rate
return nn.Sequential(*layers)
def _make_transition(self, in_channels, out_channels):
return Transition(in_channels, out_channels)
def forward(self, x):
out = self.pool1(F.relu(self.bn1(self.conv1(x))))
out = self.dense1(out)
out = self.trans1(out)
out = self.dense2(out)
out = self.trans2(out)
out = self.dense3(out)
out = self.trans3(out)
out = self.dense4(out)
out = F.avg_pool2d(F.relu(self.bn2(out)), kernel_size=7)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
```
6. 创建Densenet121模型:
```python
def densenet_121(num_classes=1000):
return DenseNet([6, 12, 24, 16], growth_rate=32, num_classes=num_classes)
```
以上就是使用PyTorch搭建Densenet121模型的过程。如果有任何问题,请随时提问。
阅读全文