python聚类分析
时间: 2023-06-21 07:24:18 浏览: 173
Python聚类分析应用(干货)(基于Python的聚类分析及其应用_庄怡雯.pdf)
聚类分析是一种常用的无监督学习方法,它可以将数据样本划分成若干个组或者簇,使得同一组内的数据样本相似度较高,不同组之间的数据样本相似度较低。Python中有很多聚类分析的库,比如Scikit-learn、SciPy、Pandas等。以下是一个简单的聚类分析示例代码:
```python
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
# 读取数据
data = pd.read_csv('data.csv')
# 数据标准化
data_scaled = (data - data.mean()) / data.std()
# 聚类分析
kmeans = KMeans(n_clusters=3, random_state=42).fit(data_scaled)
# 可视化结果
plt.scatter(data_scaled.iloc[:, 0], data_scaled.iloc[:, 1], c=kmeans.labels_)
plt.show()
```
以上代码中,我们使用KMeans算法将数据分为3个簇,并对聚类结果进行可视化。在实际应用中,我们需要根据数据的特点和需要,选择合适的聚类算法和合适的聚类数量。
阅读全文