for i in range(n): if i % (n//10) == 0: print("%0.1f"%(i/n))#每当完成总任务的10%输出 if i> 0 and i % Delta == 0: # 索引从零开始计数 if Delta > 1: max_k = max(np.array(k_idx_his[-Delta:-1])%K) +1 else: max_k = k_idx_his[-1] +1 K = min(max_k +1, N)#根据历史记录动态调整K的值,以使其能够适应数据流的变化。如果数据流的变化比较平稳,则K的值不会经常变化,这样可以避免频繁的参数更新。如果数据流的变化比较剧烈,则K的值会相应地进行调整,以更好地适应新的数据分布 i_idx = i # 实时信道生成 h_tmp = racian_mec(h0,0.3)#使用Rician衰落模型后的增益值 # 将h0增长到1,以便更好的训练; 这是深度学习中广泛采用的一种技巧 h = h_tmp*CHFACT channel[i,:] = h #变量h_tmp乘以常数CHFACT,然后将结果存储到变量h中。接着,将h赋值给二维数组channel的第i行,获取信道增益值 # 实时到达生成 dataA[i,:] = np.random.exponential(arrival_lambda) # 4) LyDROO的排队模型 if i_idx > 0: # 更新队列 Q[i_idx,:] = Q[i_idx-1,:] + dataA[i_idx-1,:] - rate[i_idx-1,:] # 当前队列 # 由于浮点错误,断言Q是正的 Q[i_idx,Q[i_idx,:]<0] =0 Y[i_idx,:] = np.maximum(Y[i_idx-1,:] + (energy[i_idx-1,:]- energy_thresh)*nu,0) # 当前能量队列 # 由于浮点错误,断言Y是正的 Y[i_idx,Y[i_idx,:]<0] =0#防止浮点错误 # 缩放Q和Y到接近1;深度学习技巧 nn_input =np.concatenate( (h, Q[i_idx,:]/10000,Y[i_idx,:]/10000)) # Actor module m_list = mem.decode(nn_input, K, decoder_mode) r_list = [] # 所有候选卸载模式的结果 v_list = [] # 候选卸载模式的目标值 for m in m_list: # Critic module # 为保存在m_list中的所有生成的卸载模式分配资源 r_list.append(Algo1_NUM(m,h,w,Q[i_idx,:],Y[i_idx,:],V)) v_list.append(r_list[-1][0]) # 记录最大奖励指数 k_idx_his.append(np.argmax(v_list)) # Policy update module # 编码最大奖励模式 mem.encode(nn_input, m_list[k_idx_his[-1]]) mode_his.append(m_list[k_idx_his[-1]])#将m_list最后一条历史消息添加到历史消息列表中,在这个算法中取消对队列积压的考虑该怎么修改
时间: 2023-12-06 12:41:26 浏览: 120
Python99道经典练习题答案(1).docx
在这段代码中,主要实现了LyDROO算法的排队模型部分。首先,在第一个if语句中,更新队列,计算当前队列的长度;然后,在第二个if语句中,更新能量队列,计算当前能量队列的长度。接下来,将信道增益值、队列长度和能量队列长度拼接成一个输入向量,输入到Actor模块中,得到所有候选卸载模式的结果。然后,对每个卸载模式,使用Critic模块计算其目标值,并记录最大奖励指数。最后,使用Policy update模块来更新历史消息列表,将最后一条历史消息添加到历史消息列表中。值得注意的是,在这个算法中取消对队列积压的考虑,需要修改更新队列和能量队列的部分代码。
阅读全文