基于pytorch的transformer架构代码
时间: 2023-09-15 16:22:59 浏览: 104
用Pytorch实现Transformer
以下是一个基于PyTorch实现的Transformer架构代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class MultiHeadAttention(nn.Module):
def __init__(self, n_heads, d_model):
super().__init__()
self.n_heads = n_heads
self.d_k = d_model // n_heads
self.q_linear = nn.Linear(d_model, d_model)
self.v_linear = nn.Linear(d_model, d_model)
self.k_linear = nn.Linear(d_model, d_model)
self.out_linear = nn.Linear(d_model, d_model)
def forward(self, q, k, v, mask=None):
bs = q.size(0)
# perform linear operation and split into N heads
k = self.k_linear(k).view(bs, -1, self.n_heads, self.d_k)
q = self.q_linear(q).view(bs, -1, self.n_heads, self.d_k)
v = self.v_linear(v).view(bs, -1, self.n_heads, self.d_k)
# transpose to get dimensions bs * N * sl * d_model
k = k.transpose(1, 2)
q = q.transpose(1, 2)
v = v.transpose(1, 2)
# calculate attention using function we will define next
scores = self.attention(q, k, v, self.d_k, mask, self.n_heads)
# concatenate heads and put through final linear layer
concat = scores.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * self.d_k)
output = self.out_linear(concat)
return output
def attention(self, q, k, v, d_k, mask=None, n_heads=None):
scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(d_k).float())
if mask is not None:
mask = mask.unsqueeze(1)
scores = scores.masked_fill(mask == 0, -1e9)
scores = F.softmax(scores, dim=-1)
if n_heads is not None:
scores = scores[:, n_heads, :, :]
output = torch.matmul(scores, v)
return output
class PositionwiseFeedforward(nn.Module):
def __init__(self, d_model, d_ff):
super().__init__()
self.linear1 = nn.Linear(d_model, d_ff)
self.linear2 = nn.Linear(d_ff, d_model)
def forward(self, x):
x = self.linear1(x)
x = F.relu(x)
x = self.linear2(x)
return x
class EncoderBlock(nn.Module):
def __init__(self, d_model, n_heads, d_ff):
super().__init__()
self.multihead_attention = MultiHeadAttention(n_heads, d_model)
self.layer_norm1 = nn.LayerNorm(d_model)
self.positionwise_feedforward = PositionwiseFeedforward(d_model, d_ff)
self.layer_norm2 = nn.LayerNorm(d_model)
def forward(self, x, mask):
attn_output = self.multihead_attention(x, x, x, mask)
x = self.layer_norm1(x + attn_output)
ff_output = self.positionwise_feedforward(x)
x = self.layer_norm2(x + ff_output)
return x
class Transformer(nn.Module):
def __init__(self, d_model, n_heads, d_ff, n_layers, n_classes):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.d_ff = d_ff
self.n_layers = n_layers
self.embedding = nn.Embedding(n_classes, d_model)
self.pos_embedding = nn.Embedding(1000, d_model) # positional embedding
self.encoder_blocks = nn.ModuleList([EncoderBlock(d_model, n_heads, d_ff) for _ in range(n_layers)])
self.out_linear = nn.Linear(d_model, n_classes)
def forward(self, x, mask=None):
x = self.embedding(x)
pos = torch.arange(0, x.size(1)).unsqueeze(0).repeat(x.size(0), 1).to(x.device)
pos = self.pos_embedding(pos)
x = x + pos
if mask is not None:
mask = mask.unsqueeze(1).unsqueeze(2)
for encoder in self.encoder_blocks:
x = encoder(x, mask)
x = self.out_linear(x[:, 0, :])
return x
```
这个代码实现了Transformer的核心部分,包括多头注意力机制、前馈神经网络和编码器块。你可以使用这个代码来实现自己的Transformer模型。
阅读全文