pytorch transformer模型代码
时间: 2024-09-18 22:04:36 浏览: 42
基于pytorch实现Transformer模型的最简洁方式源码+模型+详细注释+运行说明.zip
PyTorch Transformer模型通常基于Transformer架构,这是由Google在2017年提出的用于自然语言处理的强大模型。它主要用于序列到序列的任务,比如机器翻译和文本生成。以下是构建一个简单的Transformer模块的基本步骤:
```python
import torch
from torch import nn
class TransformerBlock(nn.Module):
def __init__(self, d_model, n_heads, dim_feedforward=2048, dropout=0.1):
super(TransformerBlock, self).__init__()
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
self.norm1 = nn.LayerNorm(d_model)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
self.linear2 = nn.Linear(dim_feedforward, d_model)
def forward(self, src, src_mask=None):
residual = src
src = self.norm1(src)
src = self.self_attn(src, src, src, key_padding_mask=src_mask)[0]
src = residual + self.dropout(src)
residual = src
src = self.norm2(src)
src = self.linear2(self.dropout(F.relu(self.linear1(src))))
src = residual + self.dropout(src)
return src
class TransformerEncoder(nn.Module):
def __init__(self, num_layers, d_model, n_heads, dropout=0.1):
super(TransformerEncoder, self).__init__()
self.layers = nn.ModuleList([TransformerBlock(d_model, n_heads, dropout) for _ in range(num_layers)])
self.norm = nn.LayerNorm(d_model)
def forward(self, src, src_mask):
for layer in self.layers:
src = layer(src, src_mask)
return self.norm(src)
# 示例用法:
encoder = TransformerEncoder(num_layers=6, d_model=512, n_heads=8)
input_tensor = ... # 假设已经填充好输入序列
output = encoder(input_tensor, src_mask=...)
```
这只是一个简化的版本,实际应用中可能需要添加更多的细节,如位置编码、残差连接等。如果你需要更详细的代码实例或者有其他问题,可以提问:
阅读全文