pytorch 中transformer模型完整代码
时间: 2023-09-08 22:12:03 浏览: 99
pytorch中的transforms模块实例详解
以下是一个使用PyTorch实现Transformer模型的完整代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=0.1)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class TransformerModel(nn.Module):
def __init__(self, ntoken, d_model, nhead, dim_feedforward, num_layers, dropout=0.5):
super(TransformerModel, self).__init__()
self.model_type = 'Transformer'
self.embedding = nn.Embedding(ntoken, d_model)
self.pos_encoder = PositionalEncoding(d_model)
encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers)
self.fc = nn.Linear(d_model, ntoken)
self.init_weights()
def _generate_square_subsequent_mask(self, sz):
mask = torch.triu(torch.ones(sz, sz)) == 1
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def init_weights(self):
initrange = 0.1
self.embedding.weight.data.uniform_(-initrange, initrange)
self.fc.bias.data.zero_()
self.fc.weight.data.uniform_(-initrange, initrange)
def forward(self, src):
src = self.embedding(src)
src = self.pos_encoder(src)
mask = self._generate_square_subsequent_mask(src.size(0)).to(src.device)
output = self.transformer_encoder(src, mask)
output = self.fc(output)
return F.log_softmax(output, dim=-1)
# 使用示例:
ntoken = 1000 # 词汇表大小
d_model = 512 # 模型维度
nhead = 8 # 多头注意力头数
dim_feedforward = 2048 # 前馈神经网络隐藏层维度
num_layers = 6 # Transformer编码器层数
dropout = 0.5
model = TransformerModel(ntoken, d_model, nhead, dim_feedforward, num_layers, dropout)
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练过程
def train():
model.train()
total_loss = 0.
for batch in training_data:
optimizer.zero_grad()
src, tgt = batch
output = model(src)
loss = criterion(output.view(-1, ntoken), tgt.view(-1))
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(training_data)
# 测试过程
def evaluate():
model.eval()
total_loss = 0.
with torch.no_grad():
for batch in test_data:
src, tgt = batch
output = model(src)
total_loss += criterion(output.view(-1, ntoken), tgt.view(-1)).item()
return total_loss / len(test_data)
```
请注意,上述代码中的`training_data`和`test_data`是训练和测试数据的例子,需要根据实际情况进行替换。此外,还需要根据任务的具体要求调整模型的超参数和其他设置。
阅读全文