用pytorch写transformer代码
时间: 2023-02-26 08:26:10 浏览: 167
好的,这里是一份简单的PyTorch代码示例,实现了Transformer模型:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
class TransformerModel(nn.Module):
def __init__(self, num_tokens, d_model, num_heads, num_layers, dim_feedforward):
super().__init__()
self.d_model = d_model
self.token_embedding = nn.Embedding(num_tokens, d_model)
self.pos_embedding = nn.Embedding(1000, d_model)
self.layer_stack = nn.ModuleList([
TransformerLayer(d_model, num_heads, dim_feedforward)
for _ in range(num_layers)
])
self.fc = nn.Linear(d_model, num_tokens)
def forward(self, x):
seq_len = x.shape[1]
pos = torch.arange(seq_len, dtype=torch.long)
pos = pos.unsqueeze(0).expand(x.shape[0], seq_len)
x = self.token_embedding(x) + self.pos_embedding(pos)
for layer in self.layer_stack:
x = layer(x)
x = self.fc(x)
return x
class TransformerLayer(nn.Module):
def __init__(self, d_model, num_heads, dim_feedforward):
super().__init__()
self.self_attn = MultiHeadAttention(d_model, num_heads)
self.feed_forward = nn.Sequential(
nn.Linear(d_model, dim_feedforward),
nn.ReLU(),
nn.Linear(dim_feedforward, d_model)
)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
def forward(self, x):
attn_output = self.self_attn(x, x, x)
x = self.norm1(x + attn_output)
ff_output = self.feed_forward(x)
x = self.norm2(x + ff_output)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super().__init__()
self.num_heads = num_heads
self.d_model = d_model
self.depth = d_model // num_heads
self.query_lin = nn.Linear(d_model, num_heads * self.depth)
self.key_lin = nn.Linear(d_model, num_heads * self.depth)
self.value_lin = nn.Linear(d_model, num_
阅读全文