pytorch实现transformer回归代码
时间: 2024-06-17 09:03:19 浏览: 257
Transformer代码实现.zip
Transformer是一种流行的神经网络模型,用于自然语言处理任务,如机器翻译、文本生成等。而在PyTorch中实现Transformer模型也比较简单,以下是一个简单的Transformer回归代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
class CustomDataset(Dataset):
def __init__(self, x, y):
self.x = x
self.y = y
def __len__(self):
return len(self.x)
def __getitem__(self, idx):
return self.x[idx], self.y[idx]
class TransformerRegressor(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim, n_layers, dropout):
super(TransformerRegressor, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.hidden_dim = hidden_dim
self.n_layers = n_layers
self.dropout = dropout
self.embedding = nn.Linear(input_dim, hidden_dim)
self.transformer_layer = nn.TransformerEncoderLayer(hidden_dim, nhead=8, dim_feedforward=2048, dropout=dropout)
self.transformer = nn.TransformerEncoder(self.transformer_layer, num_layers=n_layers)
self.output_layer = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = self.embedding(x)
x = x.transpose(0, 1)
x = self.transformer(x)
x = x.transpose(0, 1)
x = self.output_layer(x)
return x.squeeze()
# 实例化数据集和数据加载器
x_train = torch.randn(1000, 10)
y_train = torch.randn(1000, 1)
dataset = CustomDataset(x_train, y_train)
dataloader = DataLoader(dataset, batch_size=32)
# 实例化模型、损失函数和优化器
model = TransformerRegressor(input_dim=10, output_dim=1, hidden_dim=128, n_layers=3, dropout=0.2)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 开始训练
for epoch in range(10):
for i, (x_batch, y_batch) in enumerate(dataloader):
optimizer.zero_grad()
y_pred = model(x_batch)
loss = criterion(y_pred, y_batch)
loss.backward()
optimizer.step()
print(f"Epoch {epoch+1}, Loss: {loss.item():.4f}")
# 预测并输出结果
x_test = torch.randn(10, 10)
y_pred = model(x_test)
print(y_pred)
```
该代码中使用了PyTorch的`nn.TransformerEncoder`和`nn.TransformerEncoderLayer`来实现Transformer模型,同时使用了一个自定义数据集和数据加载器来加载数据。在训练过程中,使用了MSE损失函数和Adam优化器。最终输出了对一些测试数据的预测结果。如果你有任何疑问或者需要进一步的解释,请随时提出。
阅读全文