首先,通过CNN模型对图像进行特征提取,然后使用transformer将图像特征和数值数据进行融合,最后基于融合后的数据进行回归预测,生成pytorch代码
时间: 2024-01-12 14:02:44 浏览: 210
好的,下面是 PyTorch 代码的实现:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义 CNN 模型
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.dropout = nn.Dropout(p=0.5)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = self.dropout(x)
return x
# 定义 Transformer 模型
class Transformer(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_heads, dropout):
super(Transformer, self).__init__()
self.embedding = nn.Linear(input_size, hidden_size)
self.transformer = nn.TransformerEncoder(
nn.TransformerEncoderLayer(hidden_size, num_heads, dropout),
num_layers
)
def forward(self, x):
x = self.embedding(x)
x = x.permute(1, 0, 2)
x = self.transformer(x)
x = x.permute(1, 0, 2)
return x
# 定义整个模型
class Model(nn.Module):
def __init__(self, cnn, transformer, hidden_size, num_classes):
super(Model, self).__init__()
self.cnn = cnn
self.transformer = transformer
self.fc1 = nn.Linear(hidden_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x_img, x_num):
x_img = self.cnn(x_img)
x_img = torch.flatten(x_img, start_dim=1)
x_num = self.transformer(x_num)
x_num = x_num.mean(dim=1)
x = torch.cat((x_img, x_num), dim=1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
```
这个模型包括三个部分,分别是 CNN 模型、Transformer 模型和最终的回归预测部分。其中,CNN 模型用于提取图像特征,Transformer 模型用于将数值数据和图像特征进行融合,最终输出的是回归预测结果。在具体实现中,我们可以先将图像数据输入到 CNN 模型中,得到图像特征,然后将数值数据输入到 Transformer 模型中,同样得到数值特征。将这两个特征拼接起来,再通过全连接层进行回归预测即可。
阅读全文