在CNN模型中使用transformer将图像数据和数值数据融合,生成pytorch代码
时间: 2024-02-23 10:01:41 浏览: 205
以下是一个简单的示例代码,展示了如何使用PyTorch中的CNN和Transformer模型将图像和数值数据融合:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ImageTransformer(nn.Module):
def __init__(self, img_channels, img_size, num_numerical_features, transformer_emb_size, transformer_num_layers):
super(ImageTransformer, self).__init__()
# 图像卷积层
self.conv1 = nn.Conv2d(img_channels, 32, kernel_size=3, stride=2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=2)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=2)
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, stride=2)
self.conv5 = nn.Conv2d(256, 512, kernel_size=3, stride=2)
# 数值特征的线性层
self.num_lin = nn.Linear(num_numerical_features, transformer_emb_size)
# Transformer编码器层
self.transformer = nn.TransformerEncoderLayer(d_model=transformer_emb_size, nhead=4, dim_feedforward=1024, num_layers=transformer_num_layers)
# 最终的线性层
self.fc = nn.Linear(transformer_emb_size + 512, 1)
# 池化层
self.pool = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x_img, x_num):
# 图像特征提取
x_img = F.relu(self.conv1(x_img))
x_img = F.relu(self.conv2(x_img))
x_img = F.relu(self.conv3(x_img))
x_img = F.relu(self.conv4(x_img))
x_img = F.relu(self.conv5(x_img))
x_img = self.pool(x_img).view(x_img.size(0), -1)
# 数值特征编码
x_num = F.relu(self.num_lin(x_num))
# Transformer编码器处理数值特征
x_num = x_num.permute(1, 0, 2)
x_num = self.transformer(x_num)
x_num = x_num.permute(1, 0, 2)
x_num = x_num.mean(dim=1)
# 合并图像和数值特征
x = torch.cat([x_img, x_num], dim=1)
# 最终的线性层
x = self.fc(x)
return x
```
这个模型包括了一个图像卷积层和一个Transformer编码器层,用于处理数值特征。在forward方法中,我们首先提取图像特征,然后将数值特征编码成一个向量,最后将两个特征向量合并并输入到一个线性层中。
阅读全文