pytorch transformer完整代码
时间: 2024-09-17 11:03:51 浏览: 73
pytorch transformer notebook 源代码
PyTorch Transformer是一个基于Transformer模型的深度学习框架组件,它主要用于处理序列数据,如自然语言理解和机器翻译等任务。下面是一个简单的Transformer模型基础结构的代码示例,并非完整的训练流程,而是展示其核心部分:
```python
import torch
import torch.nn as nn
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class TransformerBlock(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1):
super(TransformerBlock, self).__init__()
self.self_attn = nn.MultiHeadAttention(d_model, nhead, dropout=dropout)
self.norm1 = nn.LayerNorm(d_model)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm2 = nn.LayerNorm(d_model)
def forward(self, src):
src2 = self.norm1(src)
attn_output = self.self_attn(src2, src2, src2)
src = src + self.dropout(attn_output)
src2 = self.norm2(src)
linear_output = self.linear2(self.dropout(F.relu(self.linear1(src2))))
src = src + self.dropout(linear_output)
return src
# 完整模型示例
class TransformerModel(nn.Module):
def __init__(self, input_dim, output_dim, num_layers, d_model, nhead, dim_feedforward, dropout):
super(TransformerModel, self).__init__()
self.embedding = nn.Embedding(input_dim, d_model)
self.pos_encoder = PositionalEncoding(d_model, dropout)
encoder_layer = TransformerBlock(d_model, nhead, dim_feedforward, dropout)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers)
self.fc_out = nn.Linear(d_model, output_dim)
def forward(self, src):
embedded = self.embedding(src) * math.sqrt(self.d_model)
pos_encoded = self.pos_encoder(embedded)
transformed = self.transformer_encoder(pos_encoded)
output = self.fc_out(transformed.mean(dim=1)) # 对编码后的平均池化
return output
# 使用示例
input_size = 100 # 假设输入词汇表大小
output_size = 50 # 假设输出类别数
model = TransformerModel(input_size, output_size, num_layers=6, d_model=512, nhead=8, dim_feedforward=2048, dropout=0.1)
```
阅读全文