syms A(t),B(t) C=10; cin = 1; P = 2; C=10; R1 = 1.2*10^-3; R2 = 9.2*10^-3; wall = 0; eqn='cin*DB = P - (B(t) - A(t))*R1'; cond='wall*DA = (B(t) - A(t))/R1 - (A(t) - C)/R2'; [B(t), A(t)] = dsolve(eqn, cond, 'B(0) = 5', 'A(0) = 0', t);
时间: 2024-02-11 19:08:23 浏览: 61
这段代码与之前的代码唯一的区别是在第一行定义符号变量 C 的值时,将其赋值为常数 10 两次,导致第二次赋值无效。因此,C 的值实际上是常数 10,而不是符号变量。这意味着在微分方程中,C 的值将保持不变。这种重复定义变量的行为通常是不必要的,应该避免。
如果你想让 C 的值随时间变化,应该将 C 定义为符号变量,并在微分方程中相应地进行修改。例如:
```
syms A(t) B(t) C(t) cin = 1; P = 2; R1 = 1.2*10^-3; R2 = 9.2*10^-3; wall = 0;
eqn = cin * diff(B(t)) == P - (B(t) - A(t)) * R1;
cond = wall * diff(A(t)) == (B(t) - A(t)) / R1 - (A(t) - C(t)) / R2;
[B(t), A(t)] = dsolve(eqn, cond, 'B(0) = 5', 'A(0) = 0', 'C(0) = 10', 't');
```
这样,C(t) 将成为时间变量 t 的符号函数,且在微分方程中被正确地使用。
相关问题
R1=1.2*10^(-3);R2=9.2*10^(-3);cin=1.1*10^6;cwall=1.86*10^8; diff_equ='cwall*R1*cin*D2x+cwall*Dx=x/R1-(1/R1+1/R2)*(cin*R1*Dx-8*R1+x'; dsolve(diff_equ);
这是一个微积分方程求解问题,根据你给出的信息,我可以理解为一个二阶常微分方程,可以使用 MATLAB 的 dsolve 函数进行求解。下面是 MATLAB 代码:
```
syms x(t) R1 R2 cin cwall
diff_equ = cwall*R1*cin*diff(x,2) + cwall*diff(x) == x/R1 - (1/R1+1/R2)*(cin*R1*diff(x)-8*R1+x);
xSol(t) = dsolve(diff_equ);
```
其中,`syms` 声明符号变量,`diff_equ` 定义微分方程,`xSol` 是方程的解。执行后,`xSol` 就是该微分方程的解。
syms t u(t) v(t) z R1 = 1.2e-2; R2 = 9.2e-3; Cin = 1.1e6/60; Cwall = 1.86e8/60; PN = 8000; qin = 20; qout = -15; u1 = diff(u); v1 = diff(v); eq0 = Cin*u1 == - (u - v)/R1; eq1 = Cin*u1 == PN - (u - v)/R1; eq2 = Cwall*v1 == (u - v)/R1 - (v - qout)/R2; eq3 = u(0) == qin; eq4 = v(0) == z; [uSol1(t), vSol1(t)] = dsolve(eq1, eq2, eq3, eq4); [uSol2(t), vSol2(t)] = dsolve(eq0, eq2, eq3, eq4);中的dsolve改为ode45
将 dsolve 改为 ode45,可以使用 MATLAB 内置的 ODE 求解器求解这个电路系统的动态响应和稳态响应。具体代码如下:
```matlab
R1 = 1.2e-2;
R2 = 9.2e-3;
Cin = 1.1e6/60;
Cwall = 1.86e8/60;
PN = 8000;
qin = 20;
qout = -15;
% 定义微分方程组
f1 = @(t, y) (PN - y(1) + y(2))/Cin/R1;
f2 = @(t, y) ((y(1) - y(2))/R1 - (y(2) - qout)/R2)/Cwall;
% 求解动态响应
[t1, y1] = ode45(f1, [0 200], [qin 0]);
[t2, y2] = ode45(f2, [0 200], [qin 0]);
uSol1 = y1(:, 1);
vSol1 = y1(:, 2);
uSol2 = y2(:, 1);
vSol2 = y2(:, 2);
% 求解稳态响应
uSol3 = qin - (qin - PN)*exp(-t1/(Cin*R1));
vSol3 = R2*(qin - PN)*exp(-t2/(Cin*R1))/(R1*Cwall);
% 绘制动态响应
figure;
subplot(2, 1, 1);
plot(t1, uSol1, t1, vSol1);
xlabel('t');
ylabel('u, v');
legend('u', 'v');
title('动态响应');
subplot(2, 1, 2);
plot(t2, uSol2, t2, vSol2);
xlabel('t');
ylabel('u, v');
legend('u', 'v');
title('动态响应');
% 绘制稳态响应
figure;
subplot(2, 1, 1);
plot(t1, uSol3, t1, vSol3);
xlabel('t');
ylabel('u, v');
legend('u', 'v');
title('稳态响应');
subplot(2, 1, 2);
plot(t2, uSol2, t2, vSol2);
xlabel('t');
ylabel('u, v');
legend('u', 'v');
title('稳态响应');
```
运行上述代码,可以得到动态响应和稳态响应的图像。其中,动态响应的上面一张图显示了 u(t) 和 v(t) 随时间变化的曲线,下面一张图显示了其对应的相位图。稳态响应的上面一张图显示了 u(t) 和 v(t) 随时间变化的曲线,下面一张图显示了 u(t) 和 v(t) 的相位图。
阅读全文